Skip to main content
Log in

Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern

  • Published:
Zeitschrift für Anatomie und Entwicklungsgeschichte Aims and scope Submit manuscript

Summary

Cyto- and myeloarchitectonic investigation of the temporal operculum and the exposed superior temporal gyrus was combined with a connection study of the projection fibers of the pertinent areas in the rhesus monkey.

A belt-like organization of the auditory region with a koniocortex core (corresponding to AI) surrounded by belt areas was revealed. This organization principally resembled that of the auditory region of the cat (Rose and Woolsey, 1949; Woolsey, 1961) and that of other sensory regions (Sanides, 1972; Sanides and Krishnamurti, 1967). The belt is composed of one prokoniocortex area (proA, corresponding to AII) in parinsular location and of a caudal (paAc), lateral (paAlt) and rostral (paAr) parakoniocortex area. The latter has a particular character. It was found to be the target of thalamic projections of the caudalmost portion of GMpc. In contrast to the other parakonio areas it does not receive associations of the koniocortex.

The belt areas, including the prokoniocortex, are ipsilaterally and transcallosally interconnected as in the somatic sensory (Jones and Powell, 1969a, b; Pandya and Kuypers, 1969; Pandya and Vignolo, 1969) and visual regions (Myers, 1962; Kuypers et al., 1965; Karol and Pandya, 1971).

The koniocortex core is formed by two areas, Kam and Kalt, corresponding to the architectonic organization hitherto only known in man. The medial area (Kam) has a large number of homotopical callosal projections except at its medial border (to proA). The lateral area receives less callosal fibers, particularly most of its lateral portion is devoid of terminations. Since the belt areas are rich in callosal projections the supratemporal plane shows a pattern of three stripes of callosal terminations with two intermittent stripes void of terminations.

While the projections of the koniocortex into the belt areas terminate prevalently in layer IV, the parakoniocortex sends fibers only into layers I and II of the koniocortex. This corresponds to results in somatic sensory (Pandya and McKenna, unpublished observations) and visual regions (Kuypers et al., 1965; Sanides and Vitzthum, 1965b; Spatz, personal communication).

In contrast to other sensory regions the auditory koniocortex receives its exceptionally dense, homotopic callosal connections in the whole outer stratum with emphasis on layer III, as opposed to layer IV in the somatic sensory region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ades, H. W., Felder, R.: The acoustic area of the monkey (Macaca Mulatta). J. Neurophysiol. 5, 49–59 (1942).

    Google Scholar 

  • Adrian, E. D.: Double representation of the feet in the sensory cortex of cat (Abstract). J. Physiol. (Lond.) 98, 16 (1940).

    Google Scholar 

  • Adrian, E. D.: Afferent discharges to the cerebral cortex from peripheral sense organs. J. Physiol. (Lond.) 100, 159–191 (1941).

    Google Scholar 

  • Akert, K., Woolsey, C. N., Diamond, I. T., Neff, W. T.: The cortical projection area of the posterior pole of the medial geniculate body in Macaca Mulatta. Anat. Rec. 133, 242 (1959).

    Google Scholar 

  • Benjamin, R. M., Burton, H.: Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri Sciureus). Brain Res. 7, 221–231 (1968).

    Google Scholar 

  • Benjamin, R. M., Emmers, R., Blomquist, A. J.: Projection of tongue nerve afferents to somatic sensory area I in squirrel monkey (Saimiri Sciureus). Brain Res. 7 208–220 (1968).

    Google Scholar 

  • Berman, A. L.: Overlap of somatic and auditory cortical response fields in anterior ectosylvian gyrus of cat. J. Neurophysiol. 24, 595–607 (1961).

    Google Scholar 

  • Bignall, K. E.: Bilateral temporofrontal projections in the squirrel monkey: origin, distribution and pathways. Brain Res. 13, 319–327 (1969).

    Google Scholar 

  • Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde. Leipzig: Barth 1909.

    Google Scholar 

  • Brugge, J., Merzenich, M. M.: Personal communication.

  • Casey, K. L., Cuénod, M., MacLean, P. D.: Unit analysis of visual input to posterior limbic cortex. II. Intracerebral stimuli. J. Neurophysiol. 28, 1101–1117 (1965).

    Google Scholar 

  • Clare, M. H., Bishop, G. H.: Responses from an association area secondarily activated from optic cortex. J. Neurophysiol. 17, 271–277 (1954).

    Google Scholar 

  • Clark, W. E., Le Gros, Powell, T. P. S.: On the thalamo-cortical connections of the general sensory cortex of Macaca. Proc. roy. Soc. B 141, 167–187 (1953).

    Google Scholar 

  • Cuénod, M., Casey, K. L., MacLean, P. D.: Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation. J. Neurophysiol. 28, 1118–1131 (1965).

    Google Scholar 

  • Dart, R. A.: Anatomist's tribute to F. Matthias Alexander. London: The Sheildrake Press 1970.

    Google Scholar 

  • Diamond, I. T.: The sensory neocortex. Contr. Sens. Physiol. 2, 51–100 (1967).

    Google Scholar 

  • Dow, B. M., Dubner, R.: Visual receptive fields and responses to movement in an association area of cat cerebral cortex. J. Neurophysiol. 32, 773–784 (1969).

    Google Scholar 

  • Economo, C. v., Koskinas, G. H.: Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Wien-Berlin: Springer 1925.

    Google Scholar 

  • Erickson, R. P., Jane, J. A., Waite, R., Diamond, I. T.: Single neuron investigation of sensory thalamus of the opossum. J. Neurophysiol. 27, 1026–1047 (1964).

    Google Scholar 

  • Fink, R. P., Heimer, L.: Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369–374 (1967).

    Google Scholar 

  • Flechsig, P.: Die Leitungsbahnen im Gehirn und Rückenmark des Menschen auf Grund entwicklungsgeschichtlicher Untersuchungen. Leipzig 1876.

  • Frederickson, J. M., Figge, V., Scheid, P., Kornhuber, H. M.: Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp. Brain Res. 2, 318–327 (1966).

    Google Scholar 

  • Graybiel, A. M.: Some fiber pathways related to posterior thalamic region in the cat. Brain, Behavior and Evolution (in press).

  • Guillery, R. W., Adrian, H. O., Woolsey, C. N., Rose, J. E.: Activation of somatosensory areas I and II of cat's cerebral cortex by focal stimulation of the ventrobasal complex. In: The thalamus. ed. by D. P. Purpura and M. D. Yahr. New York: Columbia University Press 1966.

    Google Scholar 

  • Heath, C. J., Jones, E. G.: Connexions of area 19 and the lateral suprasylvian area of the visual cortex of the cat. Brain Res. 19, 302–305 (1970).

    Google Scholar 

  • Hopf, A.: Zur architektonischen Gliederung der menschlichen Hirnrinde. J. Hirnforsch. 1, 442–496 (1954).

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: Receptive fields and architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: Anatomical degeneration of columns in the monkey striate cortex. Nature (Lond.) 221, 747–750 (1969).

    Google Scholar 

  • Jones, E. G., Powell, T. P. S.: Connexions of somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions. Brain 92, 477–502 (1969a).

    Google Scholar 

  • Jones, E. G., Powell, T. P. S.: Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions. Brain 92, 717–730 (1969b).

    Google Scholar 

  • Jones, E. G., Powell, T. P. S.: Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions. Brain 93, 37–56 (1970).

    Google Scholar 

  • Karol, A., Pandya, D. N.: The distribution of the corpus callosum in the rhesus monkey. Brain 94, 471–486 (1971).

    Google Scholar 

  • Kinston, W. J., Vada, M. A., Bishop, P. O.: Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nucleus of the thalamus of the cat. J. comp. Neurol. 136, 259–315 (1969).

    Google Scholar 

  • Kornhuber, H. H., Fonseca, J. S. de: Optovestibular integration in the cat's cortex: a study of sensory convergence on cortical neurons. In: The oculomotor system, ed. by M. B. Bender. New York: Hoeber 1964.

    Google Scholar 

  • Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., Rosvold, H. E.: Occipito-temporal, cortico-cortical connections in the rhesus monkey. Exp. Neurol. 11, 245–262 (1965).

    Google Scholar 

  • Locke, S.: The projections of the magnocellular medial geniculate body. J. comp. Neurol. 116, 179–194 (1961).

    Google Scholar 

  • Manson, J.: The somatosensory cortical projection of single nerve cells in the thalamus of the cat. Brain Res. 12, 489–492 (1969).

    Google Scholar 

  • Mesulam, M. M., Pandya, D. N.: The projections of the medial geniculate complex within the Sylvian fissure of the rhesus monkey. In preparation.

  • Mickle, W. A., Ades, H. W.: A composite sensory projection area in the cerebral cortex of the cat. Amer. J. Physiol. 170, 682–689 (1952).

    Google Scholar 

  • Myers, R. E.: Commissural connections between occipital lobes of the monkey. J. comp. Neurol. 118, 1–16 (1962).

    Google Scholar 

  • Nauta, W. J. H.: Silver impregnation of degeneratory axons. In: New research techniques of neuroanatomy, ed. by W. F. Windle. Springfield, Ill.: Thomas 1957.

    Google Scholar 

  • Neff, W. D.: Neural mechanisms of auditory discrimination. In: Hearing mechanisms in vertebrates, ed. by A. V. S. De Rerl and J. Knight. Ciba Foundation Symposium. Boston: Little, Brown 1968.

    Google Scholar 

  • Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der cortikalen Sehsphäre bei der Katze. Arch. Psychiat. Neurol. 203, 213–234 (1962).

    Google Scholar 

  • Pandya, D. N., Hallett, M., Mukherjee, S. K.: Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Res. 14, 49–65 (1969).

    Google Scholar 

  • Pandya, D. N., Kuypers, H. G. J. M.: Cortico-cortical connections in the rhesus monkey. Brain Res. 13, 13–36 (1969).

    Google Scholar 

  • Pandya, D. N., Vignolo, L. A.: Interhemispheric projections of the parietal lobe in the rhesus monkey. Brain Res. 15, 49–65 (1969).

    Google Scholar 

  • Pandya, D. N., Vignolo, L. A.: Intra- and interhemispheric projections of the precentral, pre-motor and arcuate areas in the rhesus monkey. Brain Res. 26, 217–233 (1971).

    Google Scholar 

  • Penfield, W.: Vestibular sensation and the cerebral cortex. Ann. Otol. (St. Louis) 66, 691–698 (1957).

    Google Scholar 

  • Penfield, W., Welch, K.: The supplementary motor area of the cerebral cortex. A clinical and experimental study. Arch. Neurol. Psychiat. (Chic.) 66, 289–317 (1951).

    Google Scholar 

  • Pinto Hamuy, T., Bromiley, R. G., Woolsey, C. N.: Somatic afferent areas I and II of dog's cerebral cortex. J. Neurophysiol. 19, 485–499 (1956).

    Google Scholar 

  • Rose, J. E.: The cellular structure of the auditory region of the cat. J. comp. Neurol. 91, 409–440 (1949).

    Google Scholar 

  • Rose, J. E., Woolsey, C. N.: The relation of thalamic connections, cellular structure, and evocable electrical activity in the auditory region of the cat. J. comp. Neurol. 91, 441–466 (1949).

    Google Scholar 

  • Rose, J. E., Woolsey, C. N.: Cortical connections and functional organization of the thalamic auditory system of cat. In: Biological and biochemical bases of behavior, ed. by H. F. Harlow and C. N. Woolsey. Madison: University of Wisconsin Press 1958.

    Google Scholar 

  • Sanides, F.: Die Architektonik des menschlichen Stirnhirns. Monograph. Gesamtgeb. Neurol. Psychiat. Bd. 98. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  • Sanides, F.: The architecture of the cortical taste nerve areas in the squirrel monkey (Saimiri Sciureus) and their relationships to insular, sensorimotor and prefrontal regions. Brain Res. 8, 97–124 (1968).

    Google Scholar 

  • Sanides, F.: Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Advances in primatology, vol. 1, ed. by Ch. Noback and W. Montagna. New York: Appleton-Century-Crofts 1970.

    Google Scholar 

  • Sanides, F.: Representation in the cerebral cortex and its areal lamination pattern. In: The structure and function of nervous tissue, vol. 5, ed. by G. H. Bourne: New York: Academic Press 1972.

    Google Scholar 

  • Sanides, F., Hoffmann, J.: Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforsch. 11, 79–109 (1969).

    Google Scholar 

  • Sanides, F., Krishnamurti, A.: Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). J. Hirnforsch. 9, 225–252 (1967).

    Google Scholar 

  • Sanides, F., Vitzthum, H.: Zur Architektonik des menschlichen Stirnhirns und den Prinzipien ihrer Entwicklung. Dtsch. Z. Nervenheilk. 187, 680–707 (1965a).

    Google Scholar 

  • Sanides, F., Vitzthum, H.: Die Grenzerscheinungen am Rande der menschlichen Sehrinde. Dtsch. Z. Nervenheilk. 187, 708–719 (1965b).

    Google Scholar 

  • Sarkissow, S. A., Fillimonoff, I. N., Kononowa, E. P., Preobraschenskaja, I. S., Kukuew, L. A.: Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz 1955.

    Google Scholar 

  • Snyder, R. S., Lee, J. C.: A stereotaxic atlas of the monkey (Macaca Mulatta). J. Neuropath. exp. Neurol. 7, 182–189 (1948).

    Google Scholar 

  • Spatz, W. B.: Personal communication.

  • Sugar, O., Chusid, J. G., French, J. D.: A second motor cortex in the monkey. (Macaca Mulatta). J. Neuropath. exp. Neurol. 7, 182–189 (1948).

    Google Scholar 

  • Talbot, S. A.: A lateral localization in the cat's visual cortex. Fed. Proc. 1, 84 (1942).

    Google Scholar 

  • Vitzthum, H., Sanides, F.: Entwicklungsprinzipien der menschlichen Sehrinde. In: Evolution of the forebrain, ed. by R. Hassler and H. Stephan. Stuttgart: Thieme 1966.

    Google Scholar 

  • Vogt, C., Vogt, O.: Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279–462 (1919).

    Google Scholar 

  • Walker, A. E.: The projection of the medial geniculate body to the cerebral cortex in the macaque monkey. J. Anat. (Lond.) 71, 319–331 (1937).

    Google Scholar 

  • Walker, A. E.: The primate thalamus. Chicago: Chicago University Press 1938.

    Google Scholar 

  • Walzl, E. M., Mountcastle, V. B.: Projection of the vestibular nerve to cerebral cortex of the cat. Amer. J. Physiol. 159, 595 (1949).

    Google Scholar 

  • Walzl, E. M., Woolsey, C. N.: Cortical auditory areas of the monkey as determined by electrical excitation of nerve fibers in the osseous spiral laminae and by electrical stimulation. Fed. Proc. 2, 52 (1943).

    Google Scholar 

  • Wegener, J. G.: Personal communication.

  • Wepsic, J. G.: Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol. 15, 299–318 (1966).

    Google Scholar 

  • Whitteridge, D.: Area 18 and vertical meridian of the visual field. In: Function of the Corpus Callosum, ed. by E. G. Ettlinger. Boston: Little, Brown 1965.

    Google Scholar 

  • Wilson, M. E.: Cortico-cortical connexions of the cat visual areas. J. Anat. (Lond.) 102, 375–386 (1968).

    Google Scholar 

  • Wilson, M. E., Cragg, B. G.: Projections from the lateral geniculate nucleus in cat and monkey. J. Anat. (Lond.) 101, 677–692 (1967).

    Google Scholar 

  • Woolsey, C. N.: Second somatic receiving areas in the cerebral cortex of cat, dog and monkey. Fed. Proc. 2, 55 (1943).

    Google Scholar 

  • Woolsey, C. N.: Additional observations of a “second” somatic receiving area in the cerebral cortex of the monkey. Fed. Proc. 3, 53 (1944).

    Google Scholar 

  • Woolsey, C. N.: Organization of somatic and sensory and motor areas of the cerebral cortex. In: Biological and biochemical bases of behaviour, ed. by H. F. Harlow and C. N. Woolsey. Madison: University of Wisconsin Press 1958.

    Google Scholar 

  • Woolsey, C. N.: Organization of cortical auditory system. In: Sensory communication, ed. by W. A. Rosenblith. New York: John Wiley & Sons 1961.

    Google Scholar 

  • Woolsey, C. N.: Comparative studies on cortical representation of vision. Vision Res., Suppl. Nr. 3, 365–382 (1971).

    Google Scholar 

  • Woolsey, C. N., Fairman, D.: Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic area I and II of the cerebral cortex of pig, sheep and other mammals. Surgery 19, 684–702 (1946).

    Google Scholar 

  • Woolsey, C. N., Guillery, R. W., Rose, J. E., Adrian, H. O.: Activation of somatosensory areas I and II of cat's cerebral cortex by focal electrical stimulation of ventrobasal complex. Fed. Proc. 22, 394 (1963).

    Google Scholar 

  • Woolsey, C. N., Walzl, E. M.: Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull. Johns Hopk. Hosp. 71, 315–344 (1942).

    Google Scholar 

  • Zeki, S. M.: Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res. 28, 338–340 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandya, D.N., Sanides, F. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwickl. Gesch. 139, 127–161 (1973). https://doi.org/10.1007/BF00523634

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00523634

Key words

Navigation