Skip to main content
Log in

A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas: Assumptions and predictions of the model

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Physical evidence indicates that the chloroplast DNA of Chlamydomonas reinhardtii is composed of approximately 75 copies of a small unique sequence. Genetic analysis of zygotes biparental for chloroplast genes shows rapid vegetative segregation of parental chloroplast alleles. Zygote clones composed entirely of homoplasmic progeny cells predominate within 10–20 post-mating generations. A model is proposed here which reconciles the high multiplicity of chloroplast genes with their rapid vegetative segregation rates. Clustering of genomes into a small number of discrete areas (nucleoids) within the chloroplast reduces the effective number of segregating units. A non-random distribution of nucleoids to daughter cells, dictated solely by the spatial arrangement of parental nucleoids with respect to the plane of chloroplast division, further increases the rate of segregation from heteroplasmic cells. Recombination between parental chloroplast genomes is viewed as an indication of nucleoid fusion, and can account for differences in the patterns and rates of segregation at different gene loci. Within such fused nucleoids, clustering of parental genomes and a non-random distribution, again based solely on physical positioning of the genomes, to daughter nucleoids, could act to promote rapid genetic purification of heteroplasmic nucleoids. The effects of biased parental nucleoid ratios, and of potentially unequal nucleoid distributions to daughter chloroplasts are also discussed with respect to observed rates and patterns of chloroplast gene segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, G. M. W., VanWinkle-Swift, K. P., Gillham, N. W., Boynton, J. E.: Plastid inheritance in Chlamydomonas reinhardtii. In: The genetics of algae. Lewin, R. A. (ed.), pp. 69–118. Oxford: Blackwell Scientific Publications 1976

    Google Scholar 

  • Adams, G. M. W.: Plasmid 1, 522–535 (1978)

    Google Scholar 

  • Bastia, D., Chiang, K-S., Swift, H., Siersma, P.: Proc. Nat. Acad. Sci. USA 68, 2410–2413 (1971)

    Google Scholar 

  • Behn, W., Herrmann, R. G.: Molec. Gen. Genet. 157, 25–30 (1977)

    Google Scholar 

  • Birky, C. W., Jr.: Ann. Rev. Genet. 12, 471–512 (1978)

    Google Scholar 

  • Bisalputra, T., Bisalputra, A. A.: J. Ultrastruct. Res. 17, 14–22 (1967)

    Google Scholar 

  • Bisalputra, T., Bisalputra, A. A.: J. Ultrastruct. Res. 32, 417–429 (1970)

    Google Scholar 

  • Blank, R., Grobe, B., Arnold, C. G.: Planta 138, 63–64 (1978)

    Google Scholar 

  • Boynton, J. E., Gillham, N. W., Harris, E. H., Tingle, C. L., VanWinkle-Swift, K., Adams, G. M. W.: Transmission, segregation, and recombination of chloroplast genes in Chlamydomonas. In: Genetics and biogenesis of chloroplasts and mitochondria. Bücher, Th., Neupert, W., Sebald, W., Werner, S. (eds.), pp. 313–322. Amsterdam: Elsevier/North-Holland Biomedical Press 1976

    Google Scholar 

  • Cavalier-Smith, T.: Nature 228, 333–335 (1970)

    Google Scholar 

  • Chiang, K.-S., Sueoka, N.: J. Cell. Physiol. 70 (Suppl. 1), 89–112 (1967)

    Google Scholar 

  • Coleman, A. W.: Exp. Cell Res. 114, 95–100 (1978)

    Google Scholar 

  • Forster, J. L., Grabowy, C. T., Harris, E. H., Boynton, J. E., Gillham, N. W.: Current Genet. 1, 137–153 (1980)

    Google Scholar 

  • Gelvin, S., Heizmann, P., Howell, S. H.: Proc. Nat. Acad. Sci. USA 74, 3193–3197 (1977)

    Google Scholar 

  • Gibbs, S. P., Poole, R. J.: J. Cell Biol. 59, 318–328 (1973)

    Google Scholar 

  • Gillham, N. W.: Genetics 48, 431–439 (1963)

    Google Scholar 

  • Gillham, N. W., Boynton, J. E., Lee, R. W.: Genetics 78, 439–457 (1974)

    Google Scholar 

  • Goodenough, U. W.: J. Phycol. 6, 1–6 (1970)

    Google Scholar 

  • Harris, E. H., Boynton, J. E., Gillham, N. W., Tingle, C. L., Fox, S. B.: Mol. Gen. Genet. 155, 249–265 (1977)

    Google Scholar 

  • Herrmann, R. G.: Planta 90, 80–96

  • Herrmann, R. G., Kowallik, K. V., Bohnert, H. J.: Port. Acta Biol. Ser. A 14, 91–110 (1974)

    Google Scholar 

  • Howell, S. H., Walker, L. L.: Biochem. Biophys. Acta (Amst.) 418, 249–256 (1976)

    Google Scholar 

  • Jope, C., James, T. W., Wildman, S. G.: J. Cell Biol. 28, 61–70 (1977)

    Google Scholar 

  • Kowallick, K. V., Herrmann, R. G.: J. Cell Sci. 11, 357–377 (1972)

    Google Scholar 

  • Meselson, M. S., Radding, C. M.: Proc. Nat. Acad. Sci. USA 72, 358–361 (1975)

    Google Scholar 

  • Michaelis, P.: Cytologia 20, 315–338 (1955)

    Google Scholar 

  • Ris, H., Plaut, W.: J. Cell Biol. 13, 383–391 (1962)

    Google Scholar 

  • Rochaix, J. D.: Studies with chloroplast DNA-plasmid hybrids from Chlamydomonas reinhardi. In: Genetics and biogenesis of chloroplasts and mitochondria. Bucher, Th., Sebald, W., Neupert, W., Werner, S. (eds.), pp. 375–378. Amsterdam: Elsevier/North-Holland Biomedical Press 1976

    Google Scholar 

  • Rose, R. J.: J. Cell Sci. 36, 169–183 (1979)

    Google Scholar 

  • Sager, R.: Cytoplasmic genes and organelles, pp. 49–104. New York: Academic Press 1972

    Google Scholar 

  • Sager, R.: Adv. Genet. 19, 287–340 (1977)

    Google Scholar 

  • Sager, R., Granick, S.: J. Gen. Physiol. 37, 729–742 (1954)

    Google Scholar 

  • Sager, R., Ramanis, Z.: Proc. Nat. Acad. Sci. USA 61, 324–331 (1968)

    Google Scholar 

  • Sager, R., Ramanis, Z.: Symp. Soc. Exp. Biol. 24, 401–417 (1970)

    Google Scholar 

  • Sager, R., Ramanis, Z.: Genetics 68, 56 (1971)

    Google Scholar 

  • Sager, R., Ramanis, Z.: Genetics 83, 303–321 (1976a)

    Google Scholar 

  • Sager, R., Ramanis, Z.: Genetics 83, 323–340 (1976b)

    Google Scholar 

  • Sears, B., Boynton, J. E., Gillham, N. W.: Genetics 86, 57 (1977)

    Google Scholar 

  • Singer, G., Sager, R., Ramanis, Z.: Genetics 83, 341–354 (1976)

    Google Scholar 

  • Spreitzer, R. J., Mets, L.: Genetics 91, s122 (1979)

    Google Scholar 

  • Surzycki, S. J., Goodenough, U. W., Levine, R. P., Armstrong, J. J.: Symp. Sc. Exp. Biol. 24, 13–37 (1970)

    Google Scholar 

  • VanWinkle-Swift, K. P.: J. Phycol. 13, 225–231 (1977)

    Google Scholar 

  • VanWinkle-Swift, K. P.: Genetics 88, 103 (1978a)

    Google Scholar 

  • VanWinkle-Swift, K. P.: Nature 275, 749–751 (1978b)

    Google Scholar 

  • VanWinkle-Swift, K. P., Birky, C. W. Jr.: Molec. gen. Genet. 166, 193–209 (1978)

    Google Scholar 

  • Wells, R., Sager, R.: J. Mol. Biol. 58, 611–622 (1971)

    Google Scholar 

  • Yokamura, E.: Cytologia 32, 361–377 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanWinkle-Swift, K.P. A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas: Assumptions and predictions of the model. Curr Genet 1, 113–125 (1980). https://doi.org/10.1007/BF00446957

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446957

Key words

Navigation