Skip to main content
Log in

The positive temperature coefficient of resistivity in barium titanate

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Positive temperature coefficient of resistivity (PTCR) materials have become very important components, and among these materials barium titanate compounds make up the most important group. When properly processed these compounds show a high PTCR at the Curie temperature (the transition temperature from the ferroelectric tetragonal phase to the paraelectric cube phase). In the first half of this paper literature related to the resistivity-temperature behaviour is discussed. As explained by the well established Heywang model, the PTCR effect is caused by trapped electrons at the grain boundaries. From reviewing experimental results in the literature it is clear that the PTCR effect can not be explained by assuming only one kind of electron trap. It is concluded that as well as barium vacancies, adsorbed oxygen as 3d-elements can act as electron traps. In the second half of this paper, the influence of the processing parameters on the PTCR related properties is discussed. Special emphasis is placed on the phenomenon that the conductivity and grain size decrease abruptly with increasing donor concentration above ∼ 0.3 at%. Several models explaining this phenomenon are discussed and apparent discrepancies in experimental data are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proteus, commercial brochure on “Shape-memory alloys”. Proteus, Stasegemsestwg 110E-B 8500 Kortrijk, Belgium (Kyodokumiai Insatsu, Nagaoka).

  2. R. Shrout, D. Moffatt and W. Huebner, J. Mater. Sci. 26 (1991) 145.

    Article  CAS  Google Scholar 

  3. L. L. Rohlfing, R. E. Newnham, S. M. Pilgrim and J. Runt, J. Wave-Mater. Interact. 3 (1988) 273.

    Google Scholar 

  4. E. Kato and M. Hasegwa, J. Chem. Soc. Jpn Ind. Chem. Sect. 70 [3] (1967) 252.

    CAS  Google Scholar 

  5. T. Ota, I. Yamai and I. Takahashi, in “29th Ceramics Basics Science Symposium”. Nagaoka, Japan, 24–25 January 1991, 1A08 (1991) p. 8.

    Google Scholar 

  6. Idem, J. Am. Ceram. Soc. 75 (1992) 1772.

    Article  CAS  Google Scholar 

  7. R. S. Perkins, A. Ruegg, M. Fischer, P. Streit and A. Menth, IEEE Trans. Compon. Hybr. Manuf. Technol. 5 (1982) 225.

    Google Scholar 

  8. B. C. Hendrix, X. Wang, W. Chen and W. Q. Cui, J. Mater. Sci. Mater. Electron. 3 (1992) 113.

    Article  CAS  Google Scholar 

  9. M. Yethiraj, J. Solid State Chem. 88 (1990) 53.

    Article  CAS  Google Scholar 

  10. B. M. Kulwicki, in “Advances in Ceramics”, Vol. 1 “Grain boundary phenomena in electronic ceramics”, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 138–53.

    Google Scholar 

  11. B. Jaffe, W. R. Cook and H. Jaffe, in “Piezoelectric Ceramics”, edited by J. P. Roberts and P. Popper (Academic Press, London, New York, 1971).

    Google Scholar 

  12. Electronic materials manufacturers association of Japan, Constant temperature PTC-heaterguide” (1990).

  13. M. Kuwabara and K. Kumamoto, J. Amer. Ceram. Soc. 66 (1983) 214.

    Google Scholar 

  14. L. Meidong, I. J. Li, L. Hsiwei, C. Zhixiong and Y. Xi, Jpn J. Appl. Phys. 24 (1985) 308.

    Google Scholar 

  15. D. Y. Wang, F. S. Hwang and T. Y. Tseng., J. Am. Ceram. Soc. 73 (1990) 2767.

    CAS  Google Scholar 

  16. T. Y. Tseng and S. H. Wang., Mater, lett. 9 (1990) 164.

    Article  CAS  Google Scholar 

  17. H. Nagomoto, H. Kagotani and T. Okubo., J. Am. Ceram. Soc. 76 (1993) 2053.

    Google Scholar 

  18. Philips Components Industrial, Evere, Brussels (1992).

  19. B. M. Kulwicki, PTC materials technology, “Advances in Ceramics”, Vol. 1, “Grain boundary phenomena in electronic ceramics, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 155–66.

    Google Scholar 

  20. W. Heywang, Solid State Electron. 3 (1961) 51.

    Article  CAS  Google Scholar 

  21. Idem, J. Am. Ceram. Soc. 47 (1964) 484.

    CAS  Google Scholar 

  22. G. H. Jonker, Solid State Electron 7 (1964) 895.

    Article  CAS  Google Scholar 

  23. A. Amin, J. Am. Ceram. Soc. 72 (1989) 369.

    Article  CAS  Google Scholar 

  24. D. Y. Wang and K. Umeya, ibid. 73 (1990) 669.

    CAS  Google Scholar 

  25. G. Goodman, ibid. 46 (1963) 48.

    CAS  Google Scholar 

  26. H. Nemoto and I. Oda, ibid. 63 (1980) 398.

    CAS  Google Scholar 

  27. H. Sumino, O. Sakurai, K. Shinozaki and N. Mizutani, J. Ceram. Soc. Jpn 100 (1992) 97.

    CAS  Google Scholar 

  28. H. S. Maiti and R. N. Basu, Mater. Res. Bull. 21 (1986) 1107.

    Article  CAS  Google Scholar 

  29. J. Illingsworth, H. M. Al-Allak, A. W. Brinkman and J. Woods, J. Appl. Phys. 67 (1990) 2088.

    Article  CAS  Google Scholar 

  30. C. J. Peng and H. Y. Lu, J. Am. Ceram Soc. 71 [1] (1988) C44–46.

    Article  CAS  Google Scholar 

  31. H. P. Chen and T. Y. Tseng, J. Mater. Sci. Lett. 8 (1989) 1483.

    Article  CAS  Google Scholar 

  32. A. B. Alles, V. R. W. Amarakoon and V. L. Burdick, J. Am. Ceram. Soc. 72 (1989) 148.

    Article  CAS  Google Scholar 

  33. D. C. Sinclair and A. R. West, J. Appl. Phys. 66 (1989) 3850.

    Article  CAS  Google Scholar 

  34. M. Kuwabara, Solid State Electron 27 (1984) 929.

    Article  CAS  Google Scholar 

  35. B. Alles Aldo and V. L. Burdick, J. Am. Ceram. Soc. 76 (1993) 401.

    Google Scholar 

  36. S. Hishita, P. Blanchart, J. F. Baumard and P. Abelard, Jap. J. Appl. Phys. Ser. 2 Lattice Defects Ceram. (1989) 167.

  37. S. Hishita, J. F. Baumard and P. Abelard, Coll. Phys. C1 Suppl. 1, 51, (1990) 979.

    Google Scholar 

  38. S. Hishita, K. Ito, J. F. Baumard and P. Abelard, J. Ceram. Soc. Jpn Int. Ed. 98 (8) (1990) 152.

    Google Scholar 

  39. S. Hishita, K. Ito, J.-F. Baumard and P. Abelard, J. Ceram. Soc. Jpn. 98 (1990) 885.

    CAS  Google Scholar 

  40. H. Ihrig and W. Puschert, J. Appl. Phys. 48 (1977) 3081.

    Article  CAS  Google Scholar 

  41. Haanstra and H. Ihrig, J. Am. Ceram. Soc. 63 (1980) 288.

    CAS  Google Scholar 

  42. B. Huybrechts, K. Ishizaki and M. Takata, ibid. 75 (1992) 722.

    Article  CAS  Google Scholar 

  43. J. Daniels, K. H. Hardtl and R. Wernicke, Philips Tech. Rev. 38(3) (1978) 73.

    Google Scholar 

  44. G. H. Jonker, Mater. Res. Bull. 2 (1967) 401.

    Article  CAS  Google Scholar 

  45. J. Daniels and R. Wernicke, Philips Res. Repts. 31 (1976) 544.

    CAS  Google Scholar 

  46. H. Igarashi, S. Hayakawa and K. Okazaki, Jpn. J. Appl. Phys. 20 (4) (1981) 135.

    CAS  Google Scholar 

  47. T. Takahashi, Y. Nakano and N. Ichinose, J. Ceram. Soc. Jpn. 98 (1990) 879.

    CAS  Google Scholar 

  48. Wernicke R., Philips Res. Repts 31 (1976) 526.

    CAS  Google Scholar 

  49. H. M. Al-Allak, G. J. Russel and J. Woods, J. Phys. D Appl. Phys. 20 (1987) 1645.

    Article  Google Scholar 

  50. Tsai-Fa Lin, Chen-Ti Hu and I-Nan Lin, J. Mater. Sci. 25 (1990) 3029.

    Article  CAS  Google Scholar 

  51. H. M. Al-Allak, A. W. Brinkman, G. J. Russel A. W. Roberts and J. Woods, J. Phys. D Appl. Phys. 21 (1988) 1226.

    Article  CAS  Google Scholar 

  52. Hong-Soo Kim, Gun Yong Sung and Chong Hee Kim, J. Am. Ceram. Soc. 75 (1992) 587.

    CAS  Google Scholar 

  53. G. V. Lewis, C. R. A. Catlow and R. E. W. Casselton, ibid. 68 (1985) 555.

    CAS  Google Scholar 

  54. G. V. Lewis and C. R. A. Catlow, Br. Ceram. Proc. 36 (1985) 187.

    CAS  Google Scholar 

  55. M. H. Chan, M. P. Harmer and D. M. Smyth J. Am. Ceram. Soc. 69 (1986) 507.

    Article  CAS  Google Scholar 

  56. G. Koschek and E. Kubalek, ibid. 68 (1985) 582.

    CAS  Google Scholar 

  57. G. Koschek, DKG 66(3/4) (1989) 128.

    CAS  Google Scholar 

  58. H. Ihrig, J. Am. Ceram. Soc. 64 (1981) 617.

    CAS  Google Scholar 

  59. H. Ueoka and M. Yodogawa, IEEE Trans. Manuf. Technol. 3(2) (1974) 77.

    Google Scholar 

  60. H. Ueoka, Ferrroelectrics 7 (1974) 351.

    CAS  Google Scholar 

  61. H. M. Al-Allak, A. W. Brinkman, G. J. Russel and J. Woods, J. Appl. Phys. 63 (1988) 4530.

    Article  CAS  Google Scholar 

  62. H. J. Hagemann and H. Ihrig, Phys. Rev. B 20 (1979) 3871.

    Article  CAS  Google Scholar 

  63. H. J. Hagemann and D. Hennings, J. Am. Ceram. Soc. 64 (1981) 590.

    CAS  Google Scholar 

  64. T. R. N. Kutty and P. Murugaraj, Mater. Lett. 3 (5,6) (1985) 195.

    Article  CAS  Google Scholar 

  65. T. R. N. Kutty, P. Murugaraj and Gajbhiye, Ibid. 2 (5A) (1984) 396.

    CAS  Google Scholar 

  66. T. R. N. Kutty, D. L. Gomathi and P. Murugaraj, Mater. Res. Bull. 21 (1986) 1093.

    Article  CAS  Google Scholar 

  67. Y. M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73 (1990) 3286.

    CAS  Google Scholar 

  68. S. B. Desu and D. A. Payne, ibid. 73 (1990) 3416.

    CAS  Google Scholar 

  69. Y. Matsuo, M. Fujimura, H. Sasaki, K. Nagase and S. Hayakawa, Ceram. Bull. 47 (1968) 292.

    CAS  Google Scholar 

  70. H. F. Cheng, J. Appl. Phys. 66 (1989) 1382.

    CAS  Google Scholar 

  71. V. Ravi and T. R. N. Kutty, J. Am. Ceram. Soc. 75 (1992) 203.

    Article  CAS  Google Scholar 

  72. H. M. O'Bryan and J. Thomson, ibid. 57 (1974) 522.

    Google Scholar 

  73. K. W. Kirby and B. A. Wechsler, ibid. 74 (1991) 1841.

    Article  CAS  Google Scholar 

  74. D. E. Rase and Roy Rustum, ibid. 38 (1955) 389.

    CAS  Google Scholar 

  75. Y. Matsuo and H. Sasaki, ibid. 54 (1971) 471.

    CAS  Google Scholar 

  76. D. F. K. Hennings, R. Janssen and P. J. L. Reynen, ibid. 70 (1987) 23.

    Article  CAS  Google Scholar 

  77. Tsai-Fa Lin, Chen-ti Hu and I-Nan Lin, ibid. 73 (1990) 531.

    CAS  Google Scholar 

  78. H. M. Al-Allak, T. V. Parry, G. J. Russel and J. Woods, J. Mater. Sci. 23 (1988) 1083.

    Article  CAS  Google Scholar 

  79. D. Hennings, Sci. Ceram. 12 (1984) 405.

    CAS  Google Scholar 

  80. S. Osaki, B. Huybrechts and K. Ishizaki, J. Ceram. Soc. 101 (1993) 955.

    CAS  Google Scholar 

  81. B. Huybrechts, J. Eur. Ceram. Soc. 11 (1993) 395.

    Article  CAS  Google Scholar 

  82. In-Chyuan Ho and Shen-Li Fu, J. Am. Ceram. Soc. 75 (1992) 728.

    Article  CAS  Google Scholar 

  83. H. Schmelz and A. Meyer, DKG 59 (1982) 436.

    CAS  Google Scholar 

  84. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, ibid. 73 (1990) 329.

    CAS  Google Scholar 

  85. S. Shiraski and K. Kakegawa in “Fine Ceramics”, edited by S. Saito (Elsevier Science, New York, 1985) pp. 150–61.

    Google Scholar 

  86. A. Hasegawa, Fujitsu Satoru, K. Koumoto and H. Yanagida, J. Ceram. Soc. Jpn 99 (1991) 718.

    CAS  Google Scholar 

  87. G. H. Jonker and E. E. Havinga, Mater. Res. Bull. 17 (1982) 345.

    Article  CAS  Google Scholar 

  88. M. Drofenik, A. Popovic, L. Irmancnik, D. Kolar and V. Krasevec, J. Am. Ceram. Soc. (1982) C203.

  89. M., Drofenik, A. Popovic and D. Kolar, Ceram. Bull 63 (1984) 702.

    CAS  Google Scholar 

  90. M. Drofenik, J. Am. Ceram. Soc. 70 (1987) 311.

    Article  CAS  Google Scholar 

  91. Idem, ibid. 73 (1990) 1587.

    Article  CAS  Google Scholar 

  92. Idem, ibid. 69 (1986) C8.

    Article  CAS  Google Scholar 

  93. H. M. Al-Allak, J. Illingsworth, A. W. Brinkman, G. J. Russel and J. Woods. J. Appl. Phys. 64 (1988) 6477.

    Article  CAS  Google Scholar 

  94. S. B. Desu and D. A. Payne, J. Am. Ceram. Soc 73 (1990) 3407.

    CAS  Google Scholar 

  95. P. Blanchart, J. F. Baumard and P. Abelard, ibid. 75 (1992) 1068.

    Article  CAS  Google Scholar 

  96. G. V. Lewis and C. R. A. Catlow, Rad. Effects 73 (1983) 307.

    CAS  Google Scholar 

  97. G. H. Jonker and E. E. Havinga, Mater. Res. Bull. 17 (1982) 345.

    Article  CAS  Google Scholar 

  98. W. Heywang, J. Mater. Sci. 6 (1971) 1214.

    Article  CAS  Google Scholar 

  99. B. Huybrechts, K. Ishizaki and M. Takata, in “Gas Pressure Effects on Materials Processing and Design”, edited by K. Ishizaki, E. Hodge, M. Concannon, Vol. 251 (MRS. Pittsburg, PA, 1992) pp. 239–44.

    Google Scholar 

  100. B. Huybrechts, K. Ishizaki and M. Takata, in “Grain Boundary Controlled Properties of Fine Ceramics, edited by K. Ishizaki, K. Niihara, M. Isotani, and R. Ford (Elsevier Science, London, 1992) pp. 32–9.

    Google Scholar 

  101. G. H. Jonker, in “Advance in Ceramics”, Vol. 1, “Grain boundary phenomena in electronic ceramics”, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 155–66.

    Google Scholar 

  102. B. Huybrechts, K. Ishizaki and M. Takata, J. Am. Ceram. Soc. 77 (1994) 286.

    CAS  Google Scholar 

  103. Idem, in “Hot Isostatic Pressing “93”, edited by L. Delaey, W. Tas and W. Kaysser (Elsevier Science, Amsterdam, 1993) pp. 451–8.

    Google Scholar 

  104. U. Knauer, Phys. Status Solidi 53 (1979) 207.

    CAS  Google Scholar 

  105. Y. M. Chiang and T. Takagi J. Am. Ceram. Soc. 73 (1990) 3278.

    CAS  Google Scholar 

  106. S. D. Desu and D. A. Payne, ibid. 73 (1990) 3398.

    CAS  Google Scholar 

  107. Idem, ibid. 73 (1990) 3391.

    CAS  Google Scholar 

  108. Y. M. Chiang and T. Takagi, ibid. 75 (1992) 2017.

    Article  CAS  Google Scholar 

  109. S. B. Desu and D. A. Payne, ibid. 75 (1992) 2020.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huybrechts, B., Ishizaki, K. & Takata, M. The positive temperature coefficient of resistivity in barium titanate. J Mater Sci 30, 2463–2474 (1995). https://doi.org/10.1007/BF00362121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362121

Keywords

Navigation