Skip to main content
Log in

Red algal plasmids

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Five of 21 red algal genera were found to contain circular dsDNA plasmids, typically of two or more sizes per species. Clones of the two plasmids (GL4.4 and GL3.5 kbp), characterizing all isolates of Gracilariopsis lemaneiformis, do not cross-hybridize with each other, with the nuclear, plastid or mitochondrial genomes of G. lemaneiformis, or with any DNA genomes of the other red algae examined. Clones of both plasmids hybridized with discrete bands on Northern blots of total RNA and poly(A)+ RNA. Sequencing of the G. lemaneiformis 3.5 kbp plasmid revealed two potential open reading frames which, when used to probe Northern blots, confirmed the presence of specific transcripts. These autonomously replicating plasmids are present in high copy number per cell and in constant proportion to each other. Their constancy suggests a function of significance to the species. Red algal plasmids may provide useful vectors for transforming economically important red algal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agabian N (1990) Cell 61:1157–1160

    Google Scholar 

  • Ausubel F, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (1989) Current protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Brown GG, Finnegan PM (1989) Int Rev Cytol 117:1–56

    Google Scholar 

  • Crouzillat D, Gentzbittel L, de la Canal L, Vaury C, Perrault A, Nicolas P, Ledoigt G (1989) Curr Genet 15:283–289

    Google Scholar 

  • Esser K, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plamids of eukaryotes. Fundamentals and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fredericq S, Hommersand MH (1989) J Phycol 25:228–241

    Google Scholar 

  • Goff LJ, Coleman AW (1988a) J Phycol 24:357–368

    Google Scholar 

  • Goff LJ, Coleman AW (1988b) J Phycol 24s:23

    Google Scholar 

  • Heizman P, Ravel-Chapuis P, Nigon V (1982) Curr Genet 6:119–122

    Google Scholar 

  • Hollenberg CP, Borst P, VanBruggen EFJ (1970) Biochim Biophys Acta 209:1–15

    Google Scholar 

  • Johnson PH, Grossman LI (1977) Biochem 16:4217–4224

    Google Scholar 

  • Lederberg J (1952) Physiol Rev 32:403–429

    Google Scholar 

  • Logeman J, Schell J, Willmitzer L (1987) Anal Biochem 163:16–20

    Google Scholar 

  • Metz A, Ward TE, Welker DL, Williams KL (1983) EMBO J 2/4:515–519

    Google Scholar 

  • Murphy TM, Thompson WF (1988) Plant molecular development. Prentice Hall, Englewood Cliffs, New Jersey, USA

    Google Scholar 

  • Pring DR, Lonsdale DM (1985) Int Rev Cytol 97:1–46

    Google Scholar 

  • Roitgrund C, Mets LJ (1990) Curr Genet 17:147–153

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning vols. 1–3. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Skikanai T, Yamada Y (1988) Curr Genet 13:441–443

    Google Scholar 

  • Smith AG, Chourey PS, Pring DR (1987) Plant Mol Biol 10:83–90

    Google Scholar 

  • Villemur R (1990) Curr Genet (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Lee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goff, L.J., Coleman, A.W. Red algal plasmids. Curr Genet 18, 557–565 (1990). https://doi.org/10.1007/BF00327028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327028

Key words

Navigation