Skip to main content
Log in

Construction by one-step gene replacement of Trichoderma reesei strains that produce the glucoamylase P of Hormoconis resinae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Two one-step gene replacement vectors containing either the Hormoconis resinae glucoamylase P (gamP) genomic gene or the corresponding cDNA, each under the control of the promoter of the Trichoderma reesei cellobiohydrolase 1 gene (cbh1), were constructed and use to replace the cbh1 gene in a T. reesei strain. In both vectors the cbh1 promoter is precisely fused to the gamP protein coding region. Both the gamP cDNA and the genomic gene direct the secretion of the active glucoamylase P (GAMP) enzyme from T. reesei, which indicates that the intron sequences in the genomic gamP gene are processed in T. reesei. According to the results, a T. reesei transformant strain, in which the cbh1 gene has been replaced by a single copy of the gamP genomic gene, secretes more active GAMP than does a transformant strain having three copies of the cDNA clone in tandem orientation at the cbh1 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M-L, Bamford DH, Korhola M (1991) Monoclonal antibodies against core and cellulase-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643–649

    Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microbiol Technol 3:153–157

    Google Scholar 

  • Banerji J, Olson J, Schaffner W (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–740

    Google Scholar 

  • Berka RM, Ward M, Wilson LJ, Hayenga KJ, Kodama KH, Carlomagno LP, Thompson SA (1990) Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86:153–162

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acad Res 7:1513–1523

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbiol Technol 10:341–346

    Google Scholar 

  • Esser K, Mohr G (1986) Integrative transformation of filamentous fungi with resepct to biotechnological application. Process Biochem Oct:153–159

  • Fagerström R (1994) Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei. Enzyme Microbiol Technol 16:36–42

    Google Scholar 

  • Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) Comparison of two glucoamylases from Hormoconis resinae. J Gen Microbiol 136:913–920

    Google Scholar 

  • Finkelstein DB (1992) Transformation. In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. Technology and products. Butterworth-Heinemann, Boston, pp 113–156

    Google Scholar 

  • Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology 7:596–603

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Joutsjoki VV, Torkkeli TK (1992) Glucoamylase P gene of Hormoconis resinae: molecular cloning, sequencing and introduction into Trichoderma reesei. FEMS Microbiol Lett 99:237–244

    Google Scholar 

  • Joutsjoki VV, Torkkeli TK, Nevalainen KMH (1993) Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei. Curr Genet 24:223–228

    Google Scholar 

  • Karhunen T, Mäntylä A, Nevalainen KMH, Suominen PL (1993) High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet 241:515–522

    Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    Google Scholar 

  • Konieczny SF, Emerson Jr CP (1987) Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol Cell Biol 7:3065–3075

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Miller BL, Miller KY, Timberlake WE (1985) Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol 5:1714–1721

    Google Scholar 

  • Nevalainen H, Penttilä M, Harkki A, Teeri T, Knowles JKC (1991) The molecular biology of Trichoderma and its application to the expression of both homologous and heterologous gene. In: Leong SA, Berka R (eds) Molecular industrial mycology. Systems and applications for filamentous fungi. Marcel Dekker Inc, New York, pp 129–148

    Google Scholar 

  • Orr-Weaver TL, Szostack JW, Rothstein RJ (1981) Yeast transformantion: a model system for the study of recombination. Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Google Scholar 

  • Prentice N (1982) Purification of beta-glucanase for beta-D-glucan assays. Cereal Chem 59:231–232

    Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Rossi P, de Crombrugghe B (1987) Identification of a cell-specific transcriptional enhancer in the first intron of the mouse α2 (type I) collagen gene. Proc Natl Acad Sci USA 84:5590–5594

    Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Saloheimo M, Niku-Paavola M-L (1991) Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Bio/Technology 9:987–990

    Google Scholar 

  • Scherer S, Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 76:4951–4955

    Google Scholar 

  • Seiboth B, Messner R, Gruber F, Kubicek CP (1992) Disruption of the Trichoderma reesei cbh2 gene coding for cellobiohydrolase II leads to a delay in the triggering of cellulase formation by cellulose. J Gen Microbiol 138: 1259–1264

    Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1:691–696

    Google Scholar 

  • Slater EP, Rabenau O, Karin M, Baxter JD, Beato M (1985) Glucocorticoid receptor binding and activation of a heterologous promoter by dexamethasone by the first intron of the human growth hormone gene. Mol Cell Biol 5:2984–2992

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Suominen P, Mäntylä A, Saarelainen R, Paloheimo M, Fagerström R, Parkkinen E, Nevalainen H (1992) Genetic engineering of Trichoderma reesei to produce suitable enzyme combinations for applications in the pulp and paper industry. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. Uni Publishers Co, Ltd, Tokyo, Japan, pp 439–445

    Google Scholar 

  • Suominen PL, Mäntylä AL, Karhunen T, Hakola S, Nevalainen H (1993) High-frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes Mol Gen Genet 241: 523–530

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Google Scholar 

  • Vainio AEI, Torkkeli HT, Tuusa T, Aho SA, Fagerström BR, Korhola MP (1993) Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Curr Genet 24: 38–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Hinnen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joutsjoki, V.V. Construction by one-step gene replacement of Trichoderma reesei strains that produce the glucoamylase P of Hormoconis resinae . Curr Genet 26, 422–429 (1994). https://doi.org/10.1007/BF00309929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309929

Key words

Navigation