Skip to main content
Log in

Restrictive pattern of pulmonary functions in idiopathic and congenital scoliosis following spinal fusion

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Résumé

Cet article présente les résultats d'une étude de la fonction pulmonaire menée chez 141 patients. 35 d'entre eux présentaient une scoliose idiopathique de l'adolescent, et 36 une scoliose congénitale; les 70 restants, assortis aux précédents en âge, sexe, taille et poids ont servi de témoins dans l'évaluation des scolioses idiopathiques. Les patients présentant une scoliose idiopathique de l'adolescent ont subi une évaluation de leurs fonctions pulmonaires avant et après l'opération. Lors de l'évaluation préopératoire, l'âge moyen était de 13.7 ans et l'angle de Cobb de 48°. Ces valeurs sont passées respectivement à 17.1 ans et 36°. L'âge moyen et l'angle de Cobb étaient respectivement de 14.5 ans et 42°, et les fonctions pulmonaires ont été évaluées avec un délai d'au moins 3 ans après l'intervention. Les résultats s'établissent comme suit: Scoliose idiopathique de l'adolescent: (i) Une disproportion notable a été retrouvée dans les valeurs des volumes respiratoires après chirurgie rachidienne. En tenant compte de la croissance de la cage thoracique, la capacité respiratoire totale est restée inchangée tandis que la capacité vitale s'est réduite de manière significative. On a noté une augmentation significative du volume résiduel. (ii) Cette élévation disproportionnée du volume résiduel a été ensuite confirmée par une augmentation très significative des rapports volume résiduel/capacité vitale et volume résiduel/capacité totale, lors de l'évaluation post-opératoire par rapport à l'évaluation préopératoire (test de Mann-Whitney, P=0.001). (iii) Le volume résiduel représentait 48% de la capacité vitale préopératoire, alors qu'il était de 35% chez les témoins normaux. Le pourcentage s'est élevé à 70% après l'opération, alors qu'il est resté inchangé chez les témoins. Scoliose congénitale: (i) La valeur moyenne du volume résiduel était notablement élevée (154% de la valeur prévue). (ii) La capacité vitale était significativement réduite chez les patients traités chirurgicalement (68% des valeurs prévues). (iii) Cette réduction de la capacité vitale était plus marquée chez les patients présentant des anomalies thoraciques multiples et traités chirurgicalement (46% des valeurs prévues). Cependant, les patients présentant des anomalies thoraciques multiples, qui n'ont pas nécessité de chirurgie, n'ont pas présenté une telle réduction de la capacité vitale. Comparaison entre les scolioses idiopathiques et congénitales: (i) Chez les patients non opérés, le pourcentage des valeurs prévues de la capacité totale, de la capacité vitale et du volume résiduel a été significativement plus élevé dans les scolioses congénitales que dans les scolioses idiopathiques de l'adolescent. (ii) Il n'y a pas eu de différence post-opératoire significative du pourcentage des valeurs prévues de la capacité totale, de la capacité vitale et du volume résiduel, entre les patients présentant une scoliose congénitale et ceux présentant une scoliose idiopathique, malgré la différence pathogénique. Ces découvertes ont un intérêt certain chez les patients scoliotiques traités par fusion vertébrale, pour ce qui concerne leur aptitude aux activités physiques intensives.

Summary

This paper presents the results of pulmonary function analysis in 141 subjects. Thirty-five of these were patients with adolescent idiopathic scoliosis, 36 had congenital scoliosis, and the remaining 70 were age-, sex-, height-, weight- and arm-span-matched normal subjects used as controls for adolescent idiopathic scoliosis. The patients with adolescent idiopathic scoliosis had their pulmonary function evaluated pre- and post-operatively. At pre-operative evaluation the mean age was 13.7 years and the mean cobb angle 48°; at post-operative evaluation the figures were 17.1 years and 36° respectively. In the congenital scoliosis group the mean age was 14.5 years and the mean Cobb angle 42°, and pulmonary functions were evaluated at a minimum of 3 years after surgery. The results are as follows: Adolescent idiopathic scoliosis: (i) Marked disproportion was found in the pulmonary volumes following spinal surgery. After taking growth of the thoracic cage into account, the total lung capacity remained unchanged whilst the vital capacity was significantly reduced and there was a significant increase in residual volume. (ii) This disproportionate increase in residual volume was further confirmed by very highly significantly increased residual volume/vital capacity and residual volume/total lung capacity ratios at post-operative evaluation compared to pre-operative ratios (Mann-Whitney test, P=0.001). (iii) The residual volume was 48% of vital capacity pre-operatively compared to 35% in normal controls. The percentages increased to 70% post-operatively, whilst it was unchanged in the matched controls. Congenital scoliosis: (i) The mean residual volume was markedly increased (154% of predicted value). (ii) Vital capacity was significantly reduced in surgically treated patients (68% of predicted values). (iii) This pattern of reduced vital capacity was more marked in those patients who had multiple thoracic anomalies and were treated surgically (46% of predicted value). However, those patients with multiple thoracic anomalies who did not require surgery did not show such reduction of vital capacity. Comparison between idiopathic and congenital scoliosis: (i) In unoperated patients, the percentages of predicted values of total lung capacity, vital capacity and residual volume were significantly greater in congenital scoliosis than in adolescent idiopathic scoliosis. (ii) Post-operatively there was no significant difference in the percentages of predicted values of total lung capacity, vital capacity and residual volume between patients with congenital scoliosis and those with adolescent idiopathic scoliosis, despite the difference in pathogenesis. These findings have relevance to scoliotic patients treated with spinal fusion with regard to their capability to perform strenuous physical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cobb JR (1948) Outline for study of scoliosis. Instr Course lect 5:261–275

    Google Scholar 

  2. Cook CD, Barrie H, DeForest SA, Hellieson PJ (1960) Pulmonary physiology in children. Paediatrics 26:766

    Google Scholar 

  3. Cotrel Y, Morel G, Rey JC (1965) La scoliose idiopathique. Acta Orthop Belg 31:795–810

    Google Scholar 

  4. Da Costa JL (1971) Pulmonary function studies in healthy Chinese adults in Singapore. Am Rev Respir Dis 104:128–131

    Google Scholar 

  5. Day GA, Upadhyay SS, Hill RA, Ho EKW, Leong JCY, Ip M (1993) Pulmonary functions in congenital scoliosis. Spine (in press)

  6. Flagstad AE, Kollman S (1928) Vital capacity and muscle study in one hundred cases of scoliosis. J Bone Joint Surg 10:724–734

    Google Scholar 

  7. Gagnon S, Jodoin A, Martin R (1989) Pulmonary function test study before and after spinal fusion in young idiopathic scoliosis. Spine 14:486–490

    Google Scholar 

  8. Gazioglu K, Goldstein LA, Femi-Pearse D, Yu PN (1968) Pulmonary function in idiopathic scoliosis. J Bone Joint Surg 50-A:1391–1398

    Google Scholar 

  9. Gucker T (1962) Changes in vital capacity in scoliosis: preliminary report on effects of treatment. J Bone Joint Surg 44-A: 469–481

    Google Scholar 

  10. Henche HR, Morscher E, Weisser K (1971) The effects of the Harrington instrumentation on pulmonary functions in the treatment of scoliosis. In: Operative treatment of scoliosis. Thieme, Stuttgart, pp 89–91

    Google Scholar 

  11. Hepper NNG, Black LF, Fowler WS (1965) Relationship of lung volumes to height and armspan in normal subjects and in patients with spinal deformity. Am Rev Respir Dis 91:356–362

    Google Scholar 

  12. Kumono K, Tsuyama N (1982) Pulmonary function before and after surgical correction of scoliosis. J Bone Joint Surg 64-A: 242–248

    Google Scholar 

  13. Lamarre A, Hall JE, Weng TR, Aspin N, Levinson H (1971) Pulmonary function in scoliosis one year after surgical correction. J Bone Joint Surg 53-A:195

    Google Scholar 

  14. Leith DE, Mead J (1967) Mechanisms determining residual volume of the lungs in normal subjects. J Appl Physiol 23:221–227

    Google Scholar 

  15. Levine DB (1979) Pulmonary function in scoliosis. Orthop Clin North Am 10:761–767

    Google Scholar 

  16. Lindh M (1978) Energy expenditure during walking in patients with scoliosis: the effect of correction. Spine 3:122–134

    Google Scholar 

  17. Lindh M, Bjure J (1975) Lung volumes in scoliosis before and after correction by the Harrington instrumentation method. Acta Orthop Scand 46:934–948

    Google Scholar 

  18. Makley JT, Herndon CH, Inkley S, Doershuk C, Mathews LW, Post RH, Littel AS (1968) Pulmonary function in paralytic and non-paralytic scoliosis before and after treatment; a study of three cases. J Bone Joint Surg 50-A:1379–1390

    Google Scholar 

  19. Meister R, Heine J (1973) Vergleichende Untersuchungen der Lungenfunktion bei jugendlichen Skoliosepatienten vor und nach der Operation nach Harrington. Z Orthop 111:749

    Google Scholar 

  20. Meznik F, Koller H, Kummer F (1972) Die Entwicklung der Lungenfunktion nach Skolioseoperationen. Z Orthop 110:542

    Google Scholar 

  21. Nash CL, Nevins K (1974) A lateral look at pulmonary function in scoliosis. J Bone Joint Surg 56-A:440

    Google Scholar 

  22. Nicolai T, Opitz G, Zielke K (1989) Long-term follow-up of lung function and standing height following surgery in children and adolescents. Monatsschr Kinderheilkd 137:592–596

    Google Scholar 

  23. Owange-Iraka JW, Harrison A, Warner JO (1984) Lung function in congenital and idiopathic scoliosis. Eur J Paediatr 142: 198–200

    Google Scholar 

  24. Perdriolle R (1979) La scoliose: son étude tridimensionelle. Maloine, Paris

    Google Scholar 

  25. Polgar G, Promadhat V (1971) Pulmonary function testing in children: techniques and standards. Saunders, Philadelphia

    Google Scholar 

  26. Scoliosis Research Society Terminology Committee. A glossary of scoliosis terms (1976) Spine 1:57–58

    Google Scholar 

  27. Shannon DC, Riseborough EJ, Kazemi H (1971) Ventilation perfusion relationships following correction of kyphoscoliosis. J Bone Joint Surg 53-A:195

    Google Scholar 

  28. Shneerson JM, Edgar MA (1979) Cardiac and respiratory function before and after spinal fusion in adolescent idiopathic scoliosis. Thorax 34:658–661

    Google Scholar 

  29. Stoboy H, Spcierer B (1975) Lungenfunktion und spiroergometrische Parameter während der Rehabilitation von Patienten mit idiopathischer Skoliose (Fusionoperation der WS nach Harrington und Training). Arch Orthop Unfallchir 81: 247–254

    Google Scholar 

  30. Upadhyay SS, Ho EKW, Gunawardene WMS, Leong JCY, Hsu LCS (1993) Changes in residual volume relative to vital capacity and total lung capacity after spine fusion in patients with adolescent idiopathic scoliosis. J Bone Joint Surg [Am] (in press)

  31. Westgate HD, Moe JH (1969) Pulmonary function in kyphoscoliosis before and after correction by the Harrington rod instrumentation method. J Bone Joint Surg 51-A:935–946

    Google Scholar 

  32. Winter RB, Wood WL, Moe JH (1975) Excessive thoracic lordosis and loss of pulmonary function in patients with idiopathic scoliosis. J Bone Joint Surg 57-A:972–977

    Google Scholar 

  33. Zorab PA, Prime FJ, Harrison A (1979) Lung function in young persons after spinal fusion for scoliosis. Spine 4:22–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, S.S., Day, G.A., Saji, M.J. et al. Restrictive pattern of pulmonary functions in idiopathic and congenital scoliosis following spinal fusion. Eur Spine J 2, 22–28 (1993). https://doi.org/10.1007/BF00301051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301051

Mots-clés

Key words

Navigation