Skip to main content
Log in

Chromatid structure: relationship between DNA content and nucleotide sequence diversity

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Models of chromatid structure are based on inferences made from genetic, cytological, and cytochemical observations. An alternative approach can provide limits as to the number of identical subunits present in chromatids. This method is based on the demonstration that nucleotide sequence diversity may be estimated from the kinetics of renaturation of denatured DNA. Measurements of DNA content and renaturation rate constants are given for several eukaryotic DNAs. Control experiments involved measurements of renaturation kinetics of DNAs from bacteria and bacteriophage. These estimates show that most of the nucleotide sequences in mouse, Drosophila, and Ciona DNA are present only once per sperm. Since the reduction of DNA content during meiosis indicates that mouse sperm contain a haploid set of chromatids, it follows that a set of mouse meiotic chromatids contains a single copy of most sequences. Models of chromatid structure which postulate multiple subunits with identical nucleotide sequences are therefore not tenable for mouse meiotic chromatids. This method of analyzing nucleotide sequence diversity may be of general use in designing models of chromatid structure in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkin, N. B., Mattinson, G., Becak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma (Berl.) 17, 1–10 (1965).

    Google Scholar 

  • —, Ohno, S.: DNA values of four primitive chordates. Chromosoma (Berl.) 23, 10–13 (1967).

    Google Scholar 

  • Bernardi, G.: Chromatography of nucleic acids on bydroxylapatite. Biochim. biophys. Acta (Amst.) 174, 423–448 (1969).

    Google Scholar 

  • Bristow, D. A., Deuchar, E. M.: Changes in nucleic acid concentration during the development of Xenopus laevis embryos. Exp. Cell Res. 35, 580–589 (1964).

    Google Scholar 

  • Britten, R. J., Kohne, D. E.: Nucleotide sequence repetition in DNA. Carnegie Inst. Wash. Year Book 66, 73–108 (1967).

    Google Scholar 

  • —: Repeated sequences in DNA. Science 161, 529–540 (1968).

    Google Scholar 

  • Brown, D., Dawid, I. B.: Specific gene amplification in oocytes. Science 160, 272–280 (1968).

    Google Scholar 

  • Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315 (1956).

    Google Scholar 

  • —: Determination of DNA concentration with diphenylamine. In: Methods in enzymology, XII B, 163–166. New York: Academic Press 1968.

    Google Scholar 

  • Cairns, J.: The chromosome of E. coli. Cold Spring Harb. Symp. quant. Biol. 28, 43–46 (1963).

    Google Scholar 

  • Davidson, E. H., Hough, B. R.: High sequence diversity in the RNA synthesized at the lampbrush stage of oögenesis. Proc. nat. Acad. Sci. (Wash.) 63, 342–349 (1969).

    Google Scholar 

  • DuPraw, E. J.: Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature (Lond.) 206, 338–343 (1965).

    Google Scholar 

  • Freifelder, D.: The use of NaClO4 to isolate bacteriophage nucleic acids. In: Methods in enzymology, XII A, 550–554. New York: Academic Press 1968.

    Google Scholar 

  • Gall, J. G.: Kinetics of deoxyribonuclease action on chromosomes. Nature (Lond.) 198, 36–38 (1963).

    Google Scholar 

  • Gillis, M., De Ley, J., De Cleene, M.: The determination of molecular weight of bacterial genome DNA from renaturation rates. Europ. J. Biochem. 12, 143–153 (1970).

    Google Scholar 

  • Griffen, A. B.: Nuclear cytology. In: Biology of the laboratory mouse (E. L. Green, ed.), 2nd edit. New York: McGraw-Hill 1966.

    Google Scholar 

  • Hollenberg, C. P., Borst, P., Bruggen, E. F. J. van: Mitochondrial DNA. V. A 25 μ closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity. Biochim. biophys. Acta (Amst.) 209, 1–15 (1970).

    Google Scholar 

  • Jones, K. W.: Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970).

    Google Scholar 

  • Kingsbury, D. T.: Estimate of the genome size of various microorganisms. J. Bact. 98, 1400–1401 (1969).

    Google Scholar 

  • Kohne, D. E.: Isolation and characterization of bacterial RNA cistrons. Biophys. J. 8, 1104–1118 (1968).

    Google Scholar 

  • Kurnick, N. B., Herskowitz, I. H.: The estimation of polyteny in Drosophila salivary gland nuclei based on determination of DNA content. J. cell comp. Physiol. 39, 281–299 (1952).

    Google Scholar 

  • Laird, C. D., McCarthy, B. J.: Magnitude of interspecific nucleotide sequence variability in Drosophila. Genetics 60, 303–322 (1968).

    Google Scholar 

  • —: Molecular characterization of the Drosophila genome. Genetics 63, 865–882 (1969).

    Google Scholar 

  • —, McConaughy, B. L., McCarthy, B. J.: Rate of fixation of nucleotide substitutions in evolution. Nature (Lond.) 224, 149–154 (1969).

    Google Scholar 

  • Maguire, M. P.: Nomarski interference contrast resolution of subchromatid structure. Proc. nat. Acad. Sci. (Wash.) 60, 533–536 (1968).

    Google Scholar 

  • Mandel, M., Marmur, J.: Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. In: Methods in enzymology, XII B, 195–206. New York: Academic Press 1968.

    Google Scholar 

  • —, Schildkraut, C. L., Marmur, J.: Use of CsCl gradient analysis for determining the guanine plus cytosine content of DNA. In: Methods in enzymology, XII B, 184–195. New York: Academic Press 1968.

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961).

    Google Scholar 

  • —, Doty, P.: Thermal renaturation of deoxyribonucleic acids. J. molec. Biol. 3, 585–594 (1961).

    Google Scholar 

  • Mazaitis, A. J., Bautz, E. K. F.: Partial isolation of an rIIB segment of T4 DNA by hybridization with homologous RNA. Proc. nat. Acad. Sci. (Wash.) 57, 1633–1637 (1967).

    Google Scholar 

  • Miyazawa, Y., Thomas, C. A., Jr.: Nucleotide composition of short segments of DNA molecules. J. molec. Biol. 11, 223–237 (1965).

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970).

    Google Scholar 

  • Patau, K.: Absorption microphotometry of irregular-shaped objects. Chromosoma (Berl.) 5, 341–362 (1952).

    Google Scholar 

  • Prescott, D. M.: The structure and replication of eukaryotic chromosomes. In: Advanc. Cell Biol. 1, 57–117 (1970).

    Google Scholar 

  • Rasch, E.M., Barr, H. J., Rasch, R. W.: The DNA content of sperm of Drosophila melanogaster. Chromosoma (Berl.) 33 (in press, 1971).

  • Rothfels, K., Sexsmith, E., Heimburger, M., Krause, M. O.: Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma (Berl.) 20, 54–74 (1966).

    Google Scholar 

  • Sober, H. A. (editor): Handbook of biochemistry. Chemical Rubber Co. 1968.

  • Stockert, J. C.: Half-chromatids in the human chromosomes from leucocyte cultures. Cytologia (Tokyo) 34, 160–162 (1969).

    Google Scholar 

  • Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965).

    Google Scholar 

  • Sueoka, N., Chiang, K., Kates, J.: DNA replication in Chlamydomonas reinhardi. I.Isotopic transfer experiments with an eight-zoospore-producing strain. J. molec. Biol. 25, 47 (1967).

    Google Scholar 

  • Swift, H. H.: The desoxyribose nucleic acid content of animal nuclei. Physiol. Zool. 23, 169–198 (1950).

    Google Scholar 

  • Thomas, C. A., Jr.: The arrangement of information in DNA molecules. J. gen. Physiol. 49, 143–168 (1966).

    Google Scholar 

  • —, Hamkalo, D. A., Misra, D. N., Lee, C. S.: The cyclization of eucaryotic DNA fragments. J. molec. Biol. 51, 621–632 (1970).

    Google Scholar 

  • Tomizawa, J., Anraku, N.: Molecular mechanisms of genetic recombination in bacteriophage. IV. Absence of polynucleotide interruption in DNA of T4 and λ phage particles, with special reference to heterozygosis. J. molec. Biol. 11, 509 (1965).

    Google Scholar 

  • Vendreley, C.: L'acide déoxyribonucléique du noyau des cellules animates. Son rôle possible dans la biochimie de l'hérédité. Bull. Biol. France et Belg. 86, 1–87 (1952).

    Google Scholar 

  • Wells, R., Birnstiel, M.: Kinetic complexity of chloroplastal deoxyribonucleic acid and mitochondrial deoxyribonucleic acid from higher plants. Biochem. J. 112, 777–786 (1969).

    Google Scholar 

  • Wetmur, J. G., Davidson, N.: Kinetics of renaturation of DNA. J. molec. Biol. 31, 349–370 (1968).

    Google Scholar 

  • Wilson, E. B.: The cell in development and heredity, 3rd edit. New York: Macmillan 1934.

    Google Scholar 

  • Wolfe, S. L., Martin, P. G.: The ultrastructure of chromosomes from two species of Vicia. Exp. Cell Res. 50, 140–150 (1968).

    Google Scholar 

  • Wolff, S.: Strandedness of chromosomes. Intern. Rev. Cytol. 25, 279–296 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laird, C.D. Chromatid structure: relationship between DNA content and nucleotide sequence diversity. Chromosoma 32, 378–406 (1971). https://doi.org/10.1007/BF00285251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285251

Keywords

Navigation