Skip to main content
Log in

Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Sulfolobus isolate B12 and its endogenous virus-like element SSV1 have provided a fruitful system for detailed analysis of certain aspects of archaebacterial molecular biology, especially those concerning gene expression. In the course of clarifying this isolate's taxonomic position, we determined DNA base composition, ability to grow autotrophically, nucleotide sequence of 16S ribosomal RNA, and level of total genomic homology to other Sulfolobus strains. Although the results generally demonstrate a similarity to S. solfataricus, DNA-DNA hybridisation and 16S rRNA sequence data indicate that isolate B12 in fact represents a distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSM:

Deutsche Sammlung von Mikroorganismen, Mascheroder Weg 1 B, D-3300 Braunschweig, FRG

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaeabacteria tree: The pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10: 231–240

    Google Scholar 

  • Bohlool BB, Brock TD (1973) Population ecology of Sulfolobus acidocaldarius. II. Immunoecological studies. Arch Microbiol 97: 181–194

    Google Scholar 

  • Brock TD (1974) Sulfolobus. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative microbiology, 8th edn. Williams and Wilkins, Baltimore, pp 461–462

    Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 54–68

    Google Scholar 

  • Carbon P, Ehresmann C, Ehresmann B, Ebel JP (1979) The complete nucleotide sequence of the ribosomal 16S RNA from Escherichia coli. Experimental details and cistron heterogeneities. Eur J Biochem 100: 399–410

    Google Scholar 

  • DeRosa M, Gambacorta A, Bu'Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86: 156–164

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radio-labeling DNA restriction fragments to high specific activity. Anal Biochem 132: 6–13

    Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: Comparison of five wild-type strains. J Bacteriol 171: 6710–6719

    Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula, gen. and sp. nov. represents a new genus of metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12: 38–47

    Google Scholar 

  • Hui I, Dennis PP (1985) Characterization of the ribosomal RNA gene clusters in Halobacterium cutirubrum. J Biol Chem 260: 899–906

    Google Scholar 

  • Jarsch M, Böck A (1985) Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii. Syst Appl Microbiol 6: 54–59

    Google Scholar 

  • Johnson JL (1984) Contributions of nucleic acid studies to bacterial taxonomy. In: Krieg M (ed) Bergey's manual of systematic microbiology, vol 1. Williams and Wilkins, Baltimore, p 11

    Google Scholar 

  • Johnson JL (1985) DNA reassocciation and RNA hybridisation of bacterial nucleic acids. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, London, pp 33–74

    Google Scholar 

  • Kaine BP, Schurke C, Stetter KO (1989) Genes for the 16S and 5S ribosomal RNAs and the 7S RNA of Pyrodictium occultum. Syst Appl Microbiol 12: 8–14

    Google Scholar 

  • Klenk H-P, Haas B, Schwass V, Zillig W (1986) Hybridization homology: A new parameter for the analysis of phylogenetic relations, demonstrated within the urkingdom of the archaebacteria. J Mol Evol 24: 167–173

    Google Scholar 

  • Martin A, Yeats S, Janekovic D, Reiter W-D, Aicher W, Zillig W (1984) SAV1, a temperate UV-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3: 2165–2168

    Google Scholar 

  • Mirault ME, Scherrer K (1971) Isolation of preribosomes from HeLa cells and their characterisation by electrophoresis on uniform and exponential-gradient-polyacrylamide gels. Eur J Biochem 23: 372–386

    Google Scholar 

  • Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR (1985) Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol 22: 301–307

    Google Scholar 

  • Ponez M, Solowiejxzyk D, Ballantine M, Schwartz E, Surrey S (1982) “Nonrandom” DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proc Natl Acad Sci USA 79: 4298–4302

    Google Scholar 

  • Prünschenk R, Baumeister W, Zillig W (1987) Surface structure variants in different species of Sulfolobus. FEMS Microbiol Lett 43: 327–330

    Google Scholar 

  • Reiter W-D, Palm P, Henschen A, Lottspeich F, Zillig W, Grampp B (1987) Identification and characterization of the genes encoding three structural proteins of the Sulfolobus virus-like particle SSV1. Mol Gen Genet 206: 144–153

    Google Scholar 

  • Reiter W-D, Palm P, Zillig W (1988a) Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res 16: 1–9

    Google Scholar 

  • Reiter W-D, Palm P, Zillig W (1988b) Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res 16: 2445–2459

    Google Scholar 

  • Reiter W-D, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17: 1907–1914

    Google Scholar 

  • Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA (1980) The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res 8: 5779–5794

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178

    Google Scholar 

  • Schägger H, Jagow Gvon (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

    Google Scholar 

  • Segerer A, Neuner A, Kristjansson J, Stetter KO (1986) Acidianus infernus, gen. nov., sp. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J System Bacteriol 36: 559–564

    Google Scholar 

  • Shivvers DW, Brock TD (1973) Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol 114: 706–710

    Google Scholar 

  • Staden R (1980) A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res 8: 3673–3694

    Google Scholar 

  • Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles: General, molecular and applied microbiology. John Wiley, New York, pp 39–74

    Google Scholar 

  • Volkin E, Astrachan L, Countryman JL (1958) Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology 6: 545–555

    Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 7: 161–177

    Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5: 97–105

    Google Scholar 

  • Yeats S, McWilliam P, Zillig W (1982) A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J 1: 1035–1038

    Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125: 259–269

    Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov. sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8: 197–203

    Google Scholar 

  • Zillig W, Palm P, Reiter W-D, Gropp F, Puehler G, Klenk H-P (1988a) Comparative evaluation of gene expression in archaebacteria. Eur J Biochem 173: 473–482

    Google Scholar 

  • Zillig W, Reiter W-D, Palm P, Gropp F, Neumann H, Rettenberger M (1988b) Viruses of archaebacteria. In: Calendar RM (ed) The bacteriophages, vol I. Plenum Press, New York, pp 517–558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grogan, D., Palm, P. & Zillig, W. Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov.. Arch. Microbiol. 154, 594–599 (1990). https://doi.org/10.1007/BF00248842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248842

Key words

Navigation