Skip to main content
Log in

Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch

I. Auditory and vocal motor systems

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The auditory and vocal motor systems of adult zebra finches were investigated 1) immunocytochemically for the distribution of the Ca2+-binding protein parvalbumin, 2) for the activity of the respiratory enzyme cytochrome oxidase, and 3) for the uptake of 2-deoxyglucose. All auditory nuclei (field L, nucleus ovoidalis, ansa lenticularis, nucleus spiriformis lateralis, nucleus mesencephalicus lateralis-pars dorsalis, nucleus tegmenti pedunculo-pontinus) and vocal motor nuclei (nucleus magnocellularis of the anterior neostriatum, area X, nucleus interfacialis, hyperstriatum ventrale-pars caudalis, nucleus robustus archistriatalis, nucleus intercollicularis) showed high levels of parvalbumin and cytochrome oxidase. Auditory nuclei in addition showed high spontaneous 2-deoxyglucose uptake, while the vocal motor nuclei either remained at background intensity (nucleus magnocellularis of the anterior neostriatum, hyperstriatum ventrale-pars caudalis, nucleus interfacialis and nucleus intercollicularis) or even below background levels (area X, nucleus robustus archistriatalis). Cytochrome oxidase activity supposedly reflects the energy demand of various aspects of metabolism, while 2-deoxyglucose uptake is primarily related to the demands of electrical activity and the Na+-K+ pump. Consequently, it is argued (i) that the congruently high cytochrome oxidase activity and 2-deoxyglucose uptake in the auditory system are due to the high spontaneous electrical activity of neurons, and (ii) that high cytochrome oxidase activity in vocal motor nuclei is related to other than electrical events since 2-deoxyglucose uptake is low. There is evidence of Ca2 + potentials in some parvalbumin-positive neuron types. Ca2+ potentials must lead to Ca2+ flooding of the cytoplasm which could be buffered by parvalbumin thus preventing interference with Ca2+ dependent metabolic reactions or shuttling the ion to sites of such reactions. The unique morphological plasticity reported from the parvalbumin-positive vocal motor nuclei may put a strain on microtubular transport which is Ca2+ dependent. This leads to the idea that parvalbumin reflects local buffering and redistribution mechanisms for Ca2+, and that cytochrome oxidase indicates the underlying energy demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold AP, Nottebohm F, Pfaff DW (1976) Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). J Comp Neurol 165:487–512

    Google Scholar 

  • Auker CR, Meszler M, Carpenter DO (1983) Apparent discrepancy between single-unit activity and 14C-deoxyglucose labeling in optic tectum of the rattlesnake. J Neurophysiol 49:1504–1516

    Google Scholar 

  • Berger TW (1984) Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science 224:627–630

    Google Scholar 

  • Berchtold MW, Celio MR, Heizmann CW (1984) Parvalbumin in non muscle tissues of the rat. J Biol Chem 259:5189–5196

    Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the Guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121

    Google Scholar 

  • Boord R (1969) The anatomy of the avian auditory system. Ann NY Acad Sci 167:186–198

    Google Scholar 

  • Braun K, Scheich H, Schachner M, Heizmann CW (1985) Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. II Visual system. Cell Tissue Res 240:117–127

    Google Scholar 

  • Brauth SE, Ferguson JL, Kitt CA (1978) Prosencephalic pathways related to the palaeostriatum of the pigeon (Columba livia). Brain Res 147:205–221

    Google Scholar 

  • Brown JL (1971) An exploratory study of vocalization areas in the brain of the red winged blackbird (Agelaius phoeniceus). Behaviour 39:91–127

    Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293:300–302

    Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibers. Nature 297:504–506

    Google Scholar 

  • Cortes R, Supavilai P, Karobath M, Palacios IM (1983) The effects of lesions in the rat hippocampus suggest the association of Ca-channel blocker binding sites with specific neuronal population. Neurosci Lett 42:249–254

    Google Scholar 

  • Craigie EH (1928) Observations on the brain of the humming bird (Chrysolampis mosquitus Linn and Chlorostilbon caribaeus Lawr). J Comp Neurol 45:377–481

    Google Scholar 

  • Craigie EM (1932) The cell structure of the cerebral hemisphere of the humming bird. J Comp Neurol 56:135–168

    Google Scholar 

  • De Voogd TJ, Nottebohm F (1981) Sex differences in dendritic morphology of a song control nucleus in the canary: A quantitative Golgi study. J Comp Neurol 196:309–316

    Google Scholar 

  • Dunwiddie TV, Lynch G (1979) The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res 169:103–110

    Google Scholar 

  • Edinger L, Wallenberg A (1899) Untersuchungen über das Gehirn der Tauben. Anat Anz 15:245–271

    Google Scholar 

  • Edinger L, Wallenberg A, Holmes G (1903) Untersuchungen über die vergleichende Anatomie des Gehirns. 5. Das Vorderhirn der Vögel. Abhandl der Senckenbergischen Naturforsch Gesellsch 20:343–426

    Google Scholar 

  • Fifkova E, Markham JA, Delay RJ (1983) Calcium in the spine apparatus in the dentate molecular layer. Brain Res 266:163–168

    Google Scholar 

  • Frankenhäuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol (London) 137:218–232

    Google Scholar 

  • Gillespie E (1975) Microtubules, cyclic AMP, calcium and secretion. Ann NY Acad Sci 253:771–779

    Google Scholar 

  • Gillis JM, Gerday C (1977) Calcium movements between myofibrils, parvalbumins and sarcoplasmic reticulum in muscle. In: Wasserman RH, Corradino R A (eds) Calcium binding proteins and calcium function: Proceedings of the 2. International Symposium on calcium binding proteins and calcium function in Health and Disease, June 5–9, Ithaca, NY

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394

    Google Scholar 

  • Gurney ME (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–673

    Google Scholar 

  • Haan EA, Boss BD, Cowan WM (1982) Production and characterization of monoclonal antibodies against the “brain-specific” proteins 14–3–2 and S-100. Proc Natl Acad Sci USA 79:7584–7589

    Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Ann Rev Neurosci 4:69: 125

    Google Scholar 

  • Heizmann CW, Strehler EE (1979) Chicken parvalbumin. Comparison with parvalbumin-like protein and three other components (M=8000–13000). J Biol Chem 254:4296–4303

    Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    Google Scholar 

  • Huber GC, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48:1–225

    Google Scholar 

  • Iqbal Z, Ochs S (1980) Similarities of fast transported Ca-binding proteins in nerve to calmodulin. In: Siegel FL et al. (eds) Calcium binding proteins: Structure and function Elsevier North Holland Inc, Amsterdam

    Google Scholar 

  • Jungherr E (1945) Certain nuclear groups of the avian mesencephalon. J Comp Neurol 82:55–76

    Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia). I Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis pars dorsalis). Brain Res 6:409–427

    Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia). II Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153

    Google Scholar 

  • Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann NY Acad Sci 167 (Art 1): 164–179

    Google Scholar 

  • Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc Roy Soc (London) 161:496–503

    Google Scholar 

  • Katz LC, Gurney ME (1981) Auditory responses in the zebra finch's motor system for song. Brain Res 211:192–197

    Google Scholar 

  • Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus — field L — in the canary. J Comp Neurol 183:455–470

    Google Scholar 

  • Kelly PT, McGuinness TL, Greengard P (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 81:945–949

    Google Scholar 

  • King GL, Somjen GG (1981) Extracellular calcium and action potentials of soma and dendrites of hippocampal pyramidal cells. Brain Res 226:339–343

    Google Scholar 

  • Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Ann Rev Biochem 49:489–515

    Google Scholar 

  • Konishi M, Akutagawa E (1981) Androgen increases protein synthesis within the avian brain vocal control system. Brain Res 222:442–446

    Google Scholar 

  • Konishi M, Gurney ME (1982) Sexual differentiation of brain and behavior. TINS 5(1): 20–23

    Google Scholar 

  • Konishi M, Nottebohm F (1969) Experimental studies in the ontogeny of avian vocalization. In: Hinde RA (ed) Bird vocalization. Cambridge University Press, London

    Google Scholar 

  • Lehky P, Blum HE, Stein EA, Fischer EH (1974) Isolation and characterization of parvalbumins from skeletal muscle of higher vertebrates. J Biol Chem 249:4332–4334

    Google Scholar 

  • Lewis JL, Ryan SM, Arnold AP, Butcher LL (1981) Evidence for catecholaminergic projection to area X in the zebra finch. J Comp Neurol 196:347–354

    Google Scholar 

  • Lin S-CC, Way EL (1984) Ca-transport in and out of brain nerve endings in vitro — The role of synaptosomal plasma membrane Ca2+-ATPase in Ca2+-extrusion. Brain Res 298:225–234

    Google Scholar 

  • Llinas R (1975) Electroresponsive properties of dendrites in central neurons. In: Kreutzberg GW (ed) Physiology and pathology of dendrites, Adv Neurol 12 Raven Press New York, pp 1–13

    Google Scholar 

  • Llinas R, Hess R (1976) Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc Natl Acad Sci USA 73:2520–2523

    Google Scholar 

  • Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using HRP-labeled antibodies. J Comp Neurol 165:197–208

    CAS  Google Scholar 

  • Malnoe A, Cox JA, Stein EA (1982) Ca-dependent regulation of calmodulin binding and adenylate cyclase activation in bovine cerebellar membranes. Biochim Biophys Acta 714:84–92

    Google Scholar 

  • Margoliash D (1983) Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J Neurosci 3:1039–1057

    Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Google Scholar 

  • Münzer E, Wiener H (1898) Beiträge zur Anatomie und Physiologie des Centralnervensystems der Taube. Mschr Psychiatr Neurol 3–4:379–406

    Google Scholar 

  • Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370

    Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    Google Scholar 

  • Nottebohm F, Kasparian S, Pandazis C (1981) Brain space for a learned task. Brain Res 213:99–109

    Google Scholar 

  • Nottebohm F, Kelley DB, Paton JA (1982) Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207:344–357

    Google Scholar 

  • Ochs S, Hollingsworth D (1971) Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J Neurochem 18:107–114

    Google Scholar 

  • Ochs S, Worth RM, Chan SY (1977) Calcium requirement for axoplasmic transport in mammalian nerve fibers. Nature 270:748–750

    Google Scholar 

  • Palmgren A (1948) A rapid method for selective silver staining of nerve fibers and nerve endings in mounted paraffin sections. Acta Zool (Stockholm) 29:377–393

    Google Scholar 

  • Papez JW (1929) Comparative neurology, Cowell, New York

    Google Scholar 

  • Patel J, Marangos PJ, Heydorn WE, Chang G, Verma A, Jakobowitz D (1983) S-100-mediated inhibition of brain protein phosphorylation. J Neurochem 41:1040–1045

    Google Scholar 

  • Peacock JH, Walker CR (1983) Development of calcium action potentials in mouse hippocampal cell cultures. Dev Brain Res 8:39–52

    Google Scholar 

  • Pfyffer GE, Bologa L, Herschkowitz N, Heizmann CW (1984) Parvalbumin, a neuronal protein in brain cell cultures. J Neurochem 43:49–57

    Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509

    Google Scholar 

  • Rausch G, Scheich H (1982) Dendritic spine loss and enlargement during maturation of speech control system in the mynah bird (Gracula religiosa). Neurosci Lett 29:129–133

    Google Scholar 

  • Ribak CE (1981) The histochemical localization of cytochrome oxidase in the dentate gyrus of the rat hippocampus. Brain Res 212:169–174

    Google Scholar 

  • Rose M (1914) Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. J Psychol Neurol 21:278–352

    Google Scholar 

  • Sandell JH (1984) The distribution of hexokinase compared to cytochrome oxidase and acetylcholinesterase in the somatosensory cortex and the superior colliculus of the rat. Brain Res 290:384–389

    Google Scholar 

  • Scheich H (1983) Two columnar systems in the auditory neostriatum of the chick: Evidence from 2-deoxyglucose. Exp Brain Res 51:199–205

    Google Scholar 

  • Scheich H, Bonke BA (1981) Tone-versus FM-induced patterns of excitation and suppression in the 14C-2-deoxyglucose labeled auditory “cortex” of the Guinea fowl. Exp Brain Res 44:445–449

    Google Scholar 

  • Seligman A, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent DAB. J Cell Biol 38:1–14

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Spitzer NC (1979) Ion channels in development. Ann Rev Neurosci 2:363–397

    Google Scholar 

  • Stokes TM, Leonard CM, Nottebohm F (1974) The telencephalon, diencephalon and mesencephalon of the canary, Serinus canarius, in the stereotaxic coordinates. J Comp Neurol 156:337–374

    Google Scholar 

  • Theurich M, Müller CM, Scheich H (1984) 2-deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian auditory neostriatum. Brain Res 322:157–161

    Google Scholar 

  • Wagner GP, Oertel WH, Wolff JR (1983) Entorhinal lesions result in shrinkage of the outer molecular layer of rat dentate gyrus leading subsequently to an apparent increase of glutamate decarboxylase and cytochrome oxidase activities. Neurose Lett 39:255–260

    Google Scholar 

  • Wasserman RH (1980) Vitamin D-induced Ca-binding proteins — An overview. In: Siegel FL et al. (eds) Calcium Binding Proteins: Structure and Function. Elsevier North Holland Inc, Amsterdam, pp 357–361

    Google Scholar 

  • Wong-Riley MTT (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Google Scholar 

  • Wong-Riley MTT, Carroll EW (1984) Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature 307:262–264

    Google Scholar 

  • Wong-Riley MTT, Riley DA (1983) The effect of impulse blockage on cytochrome oxidase activity in the cat visual system. Brain Res 261:185–193

    Google Scholar 

  • Wong-Riley MTT, Merzenich MM, Leake PA (1978) Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Res 141:185–192

    Google Scholar 

  • Youngren OM, Phillips RE (1978) A stereotaxic atlas of the brain of the three-day-old domestic chick. J Comp Neurol 181:567–600

    Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: Organization of afferent and efferent connections. Brain Res 31:313–326

    Google Scholar 

  • Zuschratter W, Scheich H, Heizmann CW (1985) Ultrastructural localization of the calcium-binding protein parvalbumin in the song system of the zebra finch. Cell Tissue Res (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, K., Scheich, H., Schachner, M. et al. Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. Cell Tissue Res. 240, 101–115 (1985). https://doi.org/10.1007/BF00217563

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217563

Key words

Navigation