Skip to main content
Log in

Microbial metabolism of fluoranthene: isolation and identification of ring fission products

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The degradation of fluoranthene by pure cultures of Alcaligenes denitrificanss WW1, isolated from contaminated soil samples, was investigated. The strain showed maximum degradation rates of 0.3 mg fluoranthene/ml per day. A denitrificans was able to utilize also naphthalene, 1- and 2-methylnaphthalene, phenanthrene, and anthracene as sole carbon sources and to co-metabolize fuuorence, pyrene, and benzo(a)anthracene. During growth on fluoranthene in batch culture two metabolic products that were completely degraded before growth entered the stationary phase were detected in the culture fluid. Anslyses by UV, mass and NMR spectroscopy identified the products as acenaphthenone and 3-hydroxymethyl-4,5-benzocoumarine. Fluoranthene-grown resting cells of A. denitrificans showed degradative activity towards 2,3-dihydroxybenzoic acid, pyrogallol, salicylic acid, and catechol. The enzymatic activities in extracts of fluoranthene-induced cells indicate a meta ring fission involved in the degradation of fluoranthene. From these data new aspects of the biodegradative pathway of fluoranthene have been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baeyer A, Villiger B (1899) Einwirkungen des Caro'schen Reagens auf Ketone. Ber Dtsch Chem 32:3625–3633

    Google Scholar 

  • Barnsley EA (1975) Bacterial degradation of fluoranthene and benzo(a)pyrene. Can J Microbiol 21:1004–1008

    Google Scholar 

  • Barnsley EA (1976) Naphthalene metabolism of Pseudomonas: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxybenzalpyruvate. Biochem Biophys Res Commun 72:1116–1121

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Google Scholar 

  • Callahan MA, Slimak MW, Gabel NW, May IP, Fowler CF, Freed JR, Jennings P, Durfee RC, Whitmore FC, Maestri B, Mabey WR, Holt BR, Gould C (1979) Water related environmental fate of 129 priory pollutants. Vol. II: Halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycylic aromatic hydrocarbons, nitrosoamines and miscellaneous compounds. EPA-440/4-79-029 b

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    CAS  PubMed  Google Scholar 

  • Chapman PJ, Meerman G, Gunsalus IC, Srinivasan R, Rinehart KL (1966) A new acyclic acid metabolite in camphor oxidation. J Am Chem Soc 88:618–619

    Google Scholar 

  • Conrad HE, DuBus R, Gunsalus IC (1961) An enzyme system for cyclic ketone lactonization. Biochem Biophys Res Commun 6:293–297

    Google Scholar 

  • Donoghue NA, Norris DB, Trudgill PW (1976) The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem 63:175–192

    Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochem J 95:819–831

    Google Scholar 

  • Fieser LF, Cason J (1940) O-Halide synthesis of 10-methyl-1',9-methylene-1, 2-benzanthracene. J Am Chem Soc 62:432–436

    Google Scholar 

  • Fujisawa H (1970) Protocatechuate 3,4-dioxygenase (pseudomonads). Methods Enzymol 17A:526–529

    Google Scholar 

  • Gibson TD (1984) Microbial degradation of organic compounds. Dekker, New York

    Google Scholar 

  • Heitkamp MA, Franklin W, Cerniglia CE (1988a) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988b) Pyrene degradation by a Mycobacterium sp.: isolation and identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    Google Scholar 

  • Kingsbury GC, Sims RC, Whie JB (1979) Multimedia goals for environmental assessment. EPA-600/7-79-176 b

  • Laflamme RE, Hite RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42:289–303

    Google Scholar 

  • Mahaffey WR, Gibson DT, Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz(a)anthracene. Appl Environ Microbiol 54:2415–2423

    Google Scholar 

  • Müller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    Google Scholar 

  • Nakazawa T, Nakazawa A (1970) Pyrocatechase (pseudomonads). Methods Enzymol 17A:518–522

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (pseudomonads). Methods Enzymol 17A:522–525

    Google Scholar 

  • Nozaki M, Kotani S, Ono K, Senoh S (1970) Metapytocatechase III. Substrate specificity and mode of ring fission. Biochem Biophys Acta 220:213–223

    Google Scholar 

  • Pahlmann R, Pelkonen O (1987) Mutagenicity studies of different polycyclic aromatic hydrocarbons: the significans of enzymatic factors and molecular structures. Carcinogenesis 8:773–778

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin-B-12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  • Poh CL, Bayly RC (1980) Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway of Pseudomonas alcaligenes. J Bacteriol 143:59–69

    Google Scholar 

  • Saeki Y, Nozaki M, Senoh S (1980) Cleavage of pyrogallol by nonheme iron-containing dioxygenases. J Biol Chem 255:8465–8471

    Google Scholar 

  • Schocken MJ, Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenapthylene. Appl Environ Microbiol 48:10–16

    Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1989) Bakterieller Abbau von Phenanthren, Fluoren und Fluoranthen. Forum Mikrobiol 1–2: 104

    Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene, and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    Google Scholar 

  • White KL (1986) An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ Carcinog Rev C4:163–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissenfels, W.D., Beyer, M., Klein, J. et al. Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl Microbiol Biotechnol 34, 528–535 (1991). https://doi.org/10.1007/BF00180583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180583

Keywords

Navigation