Skip to main content
Log in

Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The mitochondrial D-loop region of the pig, Sus scrofa, was found to be several hundred base pairs larger than the corresponding region in cow, a related artiodactyl species, primarily because of an insertion containing the tandemly repeated sequence CGTGCGTACA. Porcine mitochondrial DNA from the tissue of a single animal exhibits a large population of length polymorphs, each member of which may have as few as 14 or as many as 29 of these repeat units. This intracellular variability may be due to the repeated and self-complementary properties of this sequence, which would favor mispairing and lead to replication slippage. The repeat domain is unusual in that symmetry properties suggest it may assume alternative conformations including cruciforms and left-handed (Z) DNA. It also appears to be the longest known, naturally occurring, alternating purine-pyrimidine sequence. In order to understand the functional significance of this heteroplasmic domain that potentially disrupts a key regulatory region in the mitochondrial genome, RNA and DNA mapping studies were conducted which located this region between the H-strand replication origin and the putative L-strand transcriptional start site. H-strand RNA analysis demonstrated that this heteroplasmic region is transcribed and, therefore, that priming for H-strand DNA replication in mitochondria is independent of the primer RNA length or secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahne A, Müller-Derlich J, Merlos-Lange AM, Kanbay F, Wolfe K, Lang BF (1988) Two distinct mechanisms for deletion in mitochondrial DNA of Schizosaccharomyces pombe imitator strains. J Mol Biol 202:725–734

    Google Scholar 

  • Albertini AM, Hofer N, Carlos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319–328

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Shreier PH, Smith AJH, Staden R, Eperon I (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Bennett JL, Clayton DA (1990) Efficient site-specific cleavage by RNase MRP requires interaction with two evolutionarily conserved mitochondrial RNA sequences. Mol Cell Biol 10: 2191–2201

    Google Scholar 

  • Bermingham E, Lamb T, Avise JC (1986) Size polymorphism and heteroplasmy in the mitochondrial DNA of lower vertebrates. J Hered 77:249–252

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of the mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Boursot P, Yonekawa H, Bonhomme F (1987) Heteroplasmy in mice with a deletion of a large coding region of mitochondrial DNA. Mol Biol Evol 4:46–55

    Google Scholar 

  • Brown GG, DesRosiers LJ (1983) Rat mitochondrial DNA polymorphism: sequence analysis of a hypervariable site for insertions and deletions. Nucleic Acids Res 11:6699–6708

    Google Scholar 

  • Brook DJ, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper PS, Shaw DJ, Houseman DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Google Scholar 

  • Brunier D, Michel B, Ehrlich SD (1988) Copy choice illegimate DNA recombination. Cell 52:883–892

    Google Scholar 

  • Cann RL, Wilson AC (1983) Length mutations in human mitochondrial DNA. Genetics 104:699–711

    Google Scholar 

  • Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light strand promoter. Proc Natl Acad Sci USA 82:351–355

    Google Scholar 

  • Chang DD, Clayton DA (1987a) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 6:409–417

    Google Scholar 

  • Chang DD, Clayton DA (1987b) A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. Science 235:1178–1184

    Google Scholar 

  • Chang DD, Fisher RP, Clayton DA (1987) Roles for a promoter and RNA processing in the synthesis of mitochondrial displacement-loop strands. Biochem Biophys Acta 909:85–91

    Google Scholar 

  • Chang DD, Hauswirth WW, Clayton DA (1985) Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA. EMBO J 4:1559–1567

    Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Google Scholar 

  • Colot HV, Hall JC, Rosbach M (1988) Interspecific comparison of the period gene of Drosophila reveals large blocks of nonconserved coding DNA. EMBO J 1:3929–3937

    Google Scholar 

  • Dairaghi DJ, Clayton DA (1992) Bovine RNase MRP cleaves the divergent bovine mitochondrial RNA sequence at the displacement-loop region. J Mol Evol (in press)

  • Densmore LD, Wright JW, Brown WM (1985) Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenic and bisexual lizards (genus Cnemidophorus). Genetics 110:689–707

    Google Scholar 

  • Doda JN, Wright CT, Clayton DA (1981) Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci USA 78:6116–6120

    Google Scholar 

  • Dover GA (1989) Slips, strings and species. Trends Genet 5:100–102

    Google Scholar 

  • Geliebter J (1987) Dideoxynucleotide sequencing of RNA and uncloned cDNA. Focus 9:5–7

    Google Scholar 

  • Gentry AW (1978) Bovidae. In: Maglio VJ, Cooke HBS (eds) Evolution of African mammals. Harvard University Press, Cambridge, pp 540–572

    Google Scholar 

  • Giaver GN, Wang JC (1988) Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55:849–856

    Google Scholar 

  • Gillum AM, Clayton DA (1978) Mechanism of mitochondrial DNA replication in mouse L-cells: RNA priming during the initiation of heavy-strand synthesis. J Mol Biol 135:353–368

    Google Scholar 

  • Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21:33–49

    Google Scholar 

  • Hale LR, Singh RS (1986) Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of Drosophila melanogaster. Proc Natl Acad Sci USA 83: 8813–8817

    Google Scholar 

  • Harrison RG, Rand DM, Wheeler WC (1985) Mitochondrial DNA size variation within individual crickets. Science 228: 1446–1448

    Google Scholar 

  • Harrison RG, Rand DM, Wheeler WC (1987) Mitochondrial DNA variation across a narrow hybrid zone. Mol Biol Evol 4:144–153

    Google Scholar 

  • Hauswirth WW, Clayton DA (1985) Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res 13:8093–8104

    Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690

    Google Scholar 

  • Hauswirth WW, Laipis PJ (1985) Transmission genetics of mammalian mitochondrial: a molecular model and experimental evidence. In: Quagliarello E, Slater EC, Palmiera F, Saccone C, Kroon AM (eds) Achievements and perspective in mitochondrial research, II. Elsevier, Amsterdam, pp 37–41

    Google Scholar 

  • Hauswirth WW, Van de Walle MJ, Laipis PJ, Olivo PD (1984) Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell 37:1001–1007

    Google Scholar 

  • Hentschel CC (1982) Homocopolymer sequences in the sequences of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295:714–716

    Google Scholar 

  • Hoeh WR, Blakley KH, Brown WM (1991) Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251:1488–1490

    Google Scholar 

  • Jones CW, Kafatos FC (1982) Accepted mutations in a gene family: evolutionary diversification of duplicated DNA. J Mol Evol 19:87–103

    Google Scholar 

  • Karawya EM, Martin RG (1987) Monkey (CV-1) mitochondrial DNA contains a unique triplication of 108 by in the origin region. Biochem Biophys Acta 909:30–34

    Google Scholar 

  • King TC, Low RC (1987) Mapping of control elements in the displacement loop region of mitochondrial DNA. J Biol Chem 262:6204–6213

    Google Scholar 

  • Kunkel TA (1990) Misalignment-mediated DNA synthesis errors. Biochemistry 29:8003–8011

    Google Scholar 

  • LaRoche J, Snyder M, Cook DI, Fuller K, Zouros E (1990) Molecular characterization of a repeat element causing large-scale variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol 7:45–64

    Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. J Mol Evol 4: 203–221

    Google Scholar 

  • Mace HAF, Pelham HRB, Travers AA (1983) Association of a S1 nuclease-sensitive structure with short direct repeats 5' of Drosophila heat shock genes. Nature 304:555–557

    Google Scholar 

  • MacKay SLD, Olivo PD, Laipis PJ, Hauswirth WW (1986) Template-directed arrest of mammalian mitochondrial DNA synthesis. Mol Cell Biol 6:1261–1267

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavage. Methods Enzymol 65:499–560

    Google Scholar 

  • McLean MJ, Wells RD (1988) The role of DNA sequence in the formation of Z-DNA versus cruciforms in plasmids. J Biol Chem 263:7370–7377

    Google Scholar 

  • Mignotte F, Gueride M, Champagne A-M, Mounolou JC (1990) Direct repeats in the noncoding region of rabbit mitochondrial DNA: involvement in the generation of intra and inter-individual heterogeneity. Eur J Biochem 194:561–571

    Google Scholar 

  • Monnat RJ, Loeb LA (1985) Nucleotide sequence preservation of human mitochondrial DNA. Proc Natl Acad Sci USA 82: 2895–2899

    Google Scholar 

  • Monnerot M, Mounolou JC, Solignac M (1984) Intra-individual length heterogeneity of Rana esculenta mitochondrial DNA. Biol Cell 52:213–218

    Google Scholar 

  • Moritz C, Brown WM (1986) Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science 233:1425–1427

    CAS  PubMed  Google Scholar 

  • Murphy GL, Connell TD, Barritt DS, Koomey M, Cannon JG (1989) Phase variation of gonoccocal protein II: regulation of gene expression by slipped-strand mispairing of repetitive DNA sequence. Cell 56:539–547

    Google Scholar 

  • Okimoto R, Chamberlin HM, Macfarlane JL, Wolstenholme DR (1991) Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification. Nucleic Acids Res 19:1619–1626

    CAS  PubMed  Google Scholar 

  • Olivo PD, Van de Walle MJ, Laipis PJ, Hauswirth WW (1983) Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306:400–402

    Google Scholar 

  • Peticolas WL, Wang Y, Thomas GA (1988) Some rules for predicting the base-sequence dependencies of DNA conformation. Proc Natl Acad Sci USA 85:2579–2583

    Google Scholar 

  • Pilgrim GE (1947) The evolution of the buffaloes, oxen, sheep, and goats. J Linn Soc Zool 41:272–286

    Google Scholar 

  • Rich A, Nordheim A, Wang AHJ (1984) The chemistry and biology of left-handed Z-DNA. Ann Rev Biochem 53:791–846

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    CAS  PubMed  Google Scholar 

  • Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244:346–349

    Google Scholar 

  • Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC (1989) Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: A slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 86:7952–7956

    Google Scholar 

  • Snyder M, Fraser AR, LaRoche J, Gartner-Kepkay KE, Zouros E (1987) Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanious. Proc Natl Acad Sci USA 84:7595–7599

    Google Scholar 

  • Solignac M, Genermot J, Monnerot M, Mounolou JC (1984) Genetics of mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. Mol Gen Genet 197:183–188

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1983) Mitochondrial DNA heteroplasmy. Proc Natl Acad Sci USA 80:6942–6946

    Google Scholar 

  • Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M (1966) Frameshift mutations and the genetic code. Cold Spring Harbor Symp Quant Biol 31:77–84

    Google Scholar 

  • Tapper DP, Van Etten RA, Clayton DA (1983) Isolation of mammalian mitochondrial DNA and RNA and cloning of the mitochondrial genome. Methods Enzymol 97:426–434

    Google Scholar 

  • Upholt WB, Dawid IB (1977) Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region. Cell 11:571–583

    Google Scholar 

  • Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, Van Boom JH, Van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686

    Google Scholar 

  • Wells RD (1988) Unusual DNA structures. J Biol Chem 263:1095–1098

    Google Scholar 

  • Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617

    Google Scholar 

  • Wittig B, Dorbic T, Rich A (1991) Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc Natl Acad Sci USA 88:2259–2263

    Google Scholar 

  • Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:440–553

    Google Scholar 

  • Yu S, Mulley J, Loesch D, Turner G, Donnelly A, Gedeon A, Hillen D, Kremer E, Lynch M, Pritchard M, Sutherland GR, Richards RI (1992) Fragile-X syndrome: unique genetics of the heritable unstable element. Am J Hum Genet 50:968–980

    Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: W.W. Hauswirth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghivizzani, S.C., Mackay, S.L.D., Madsen, C.S. et al. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol 37, 36–47 (1993). https://doi.org/10.1007/BF00170460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170460

Keywords

Navigation