Skip to main content
Log in

A stochastic behavioral model and a ‘Microscopic’ foundation of evolutionary game theory

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

A stochastic model is developed to describe behavioral changes by imitative pair interactions of individuals. ‘Microscopic’ assumptions on the specific form of the imitative processes lead to a stochastic version of the game dynamical equations, which means that the approximate mean value equations of these equations are the game dynamical equations of evolutionary game theory.

The stochastic version of the game dynamical equations allows the derivation of covariance equations. These should always be solved along with the ordinary game dynamical equations. On the one hand, the average behavior is affected by the covariances so that the game dynamical equations must be corrected for increasing covariances; otherwise they may become invalid in the course of time. On the other hand, the covariances are a measure of the reliability of game dynamical descriptions. An increase of the covariances beyond a critical value indicates a phase transition, i.e. a sudden change in the properties of the social system under consideration.

The applicability and use of the equations introduced are illustrated by computational results for the social self-organization of behavioral conventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arthur, W.B.: 1988, ‘Competing Technologies: An Overview’, in: Dosi, R. et al. (eds.), Technical Change and Economic Theory, Pinter Publishers, London and New York.

    Google Scholar 

  • Arthur, W.B.: 1989, ‘Competing Technologies, Increasing Returns, and Lock-In by Historical Events’, The Economic Journal 99, 116–131.

    Google Scholar 

  • Axelrod, R.: 1984, The Evolution of Cooperation, Basic Books, New York.

    Google Scholar 

  • Boltzmann, L.: 1964, Lectures on Gas Theory, University of California, Berkeley.

    Google Scholar 

  • Domencich, T.A. and McFadden, D.: 1975, Urban Travel Demand. A Behavioral Analysis, North-Holland, Amsterdam, pp. 61–69.

    Google Scholar 

  • Durlauf, S.: 1989, ‘Locally Interacting Systems, Coordination Failure, and the Long Run Behavior of Aggregate Activity’, Working Paper No. 3719, National Bureau of Economic Research, Cambridge, MA.

    Google Scholar 

  • Durlauf, S.: 1991, ‘Nonergodic Economic Growth’, mimeo Stanford University.

  • Eigen, M.: 1971, ‘The Selforganization of Matter and the Evolution of Biological Macromolecules’, Naturwissenschaften 58, 465.

    Google Scholar 

  • Eigen, M. and Schuster, P.: 1979, The Hypercycle, Springer, Berlin.

    Google Scholar 

  • Feistel, R. and Ebeling, W.: 1989, Evolution of Complex Systems, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Fisher, R.A.: 1930, The Genetical Theory of Natural Selection, Oxford University, Oxford.

    Google Scholar 

  • Fokker, A.D.: 1914, Annalen der Physik 43, 810ff.

  • Föllmer, H.: 1974, ‘Random Economics with Many Interacting Agents’, Journal of Mathematical Economics 1, 51–62.

    Google Scholar 

  • Gardiner, C.W.: 1983, Handbook of Stochastic Methods, Springer, Berlin.

    Google Scholar 

  • Glance, N.S. and Huberman, B.A.: 1992, ‘Dynamics with Expectations’, Physics Letters A 165, 432–440.

    Google Scholar 

  • Haag, G., Hilliges, M., and Teichmann, K.: 1993, ‘Towards a Dynamic Disequilibrium Theory of Economy’, in: Nijkamp, P. and Reggiani, A. (eds.), Nonlinear Evolution of Spatial Economic Systems, Springer, Berlin.

    Google Scholar 

  • Haken, H.: 1975, ‘Cooperative Phenomena in Systems Far from Thermal Equilibrium and in Nonphysical Systems’, Reviews of Modern Physics 47, 67–121.

    Google Scholar 

  • Haken, H.: 1979, Synergetics. An Introduction, Springer, Berlin.

    Google Scholar 

  • Haken, H.: 1983, Advanced Synergetics, Springer, Berlin.

    Google Scholar 

  • Hauk, M.: 1994, Evolutorische Ökonomik und private Transaktionsmedien, Lang, Frankfurt/Main.

    Google Scholar 

  • Helbing, D.: 1991, ‘A Mathematical Model for the Behavior of Pedestrians’, Behavioral Science 36, 298–310.

    Google Scholar 

  • Helbing, D.: 1992, Stochastische Methoden, nichtlineare Dynamik und quantitative Modelle sozialer Prozesse, Ph.D. thesis, University of Stuttgart. Published (1993) by Shaker, Aachen. Corrected and enlarged English edition: Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, published (1995) by Kluwer Academic, Dordrecht.

  • Helbing, D.: 1992a, ‘Interrelations between Stochastic Equations for Systems with Pair Interactions’, Physica A 181, 29–52.

    Google Scholar 

  • Helbing, D.: 1992b, ‘A Mathematical Model for the Behavior of Individuals in a Social Field’, Journal of Mathematical Sociology 19, 189–219.

    Google Scholar 

  • Hofbauer, J., Schuster, P., and Sigmund, K.: 1979, ‘A Note on Evolutionarily Stable Strategies and Game Dynamics’, J. Theor. Biology 81, 609–612.

    Google Scholar 

  • Hofbauer, J., Schuster, P., Sigmund, K., and Wolff, R.: 1980, ‘Dynamical Systems under Constant Organization’, J. Appl. Math. 38, 282–304.

    Google Scholar 

  • Hofbauer, J. and Sigmund, K.: 1988, The Theory of Evolution and Dynamical Systems, Cambridge University, Cambridge.

    Google Scholar 

  • Ising, E.: 1925, Zeitschrift für Physik 31, 253ff.

  • Kramers, H.A.: 1940, Physica 7, 284ff.

  • Langevin, R: 1908, Comptes Rendues 146, 530ff.

  • Luce, R.D. and Raiffa, H.: 1957, Games and Decisions, Wiley, New York.

    Google Scholar 

  • Luce, R.D.: 1959, Individual Choice Behavior, Wiley, New York, Ch. 2.A: ‘Fechner's Problem’.

    Google Scholar 

  • Moyal, J.E.: 1949, J. Royal Stat. Soc. 11, 151–210.

    Google Scholar 

  • von Neumann, J. and Morgenstern, O.: 1944, Theory of Games and Economic Behavior, Princeton University, Princeton.

    Google Scholar 

  • Nicolis, G. and Prigogine, I.: 1977, Self-Organization in Nonequilibrium Systems, Wiley, New York.

    Google Scholar 

  • Orléan, A.: 1992, ‘Contagion des Opinions et Fonctionnement des Marchés Financiers’, Revue Économique 43, 685–698.

    Google Scholar 

  • Orléan, A.: 1993, Decentralized Collective Learning and Imitation: A Quantitative Approach', mimeo CREA.

  • Orléan, A. and Robin, J.-M.: 1992, ‘Variability of Opinions and Speculative Dynamics on the Market of a Storable Goods’, mimeo CREA.

  • Pauli, H.: 1928, in: Debye, P. (ed.), Probleme der Modernen Physik, Hirzel, Leipzig.

    Google Scholar 

  • Planck, M.: 1917, in Sitzungsber. Preuss. Akad. Wiss., pp. 324ff.

  • Prigogine, I.: 1976, ‘Order through Fluctuation: Self-Organization and Social System’, in: Jantsch, E. and Waddington, C.H. (eds.), Evolution and Consciousness. Human Systems in Transition, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Rapoport, A. and Chammah, A.M.: 1965, Prisoner's Dilemma. A Study in Conflict and Cooperation, University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Schnabl, W., Stadler, P.F., Forst, C., and Schuster, P.: 1991, ‘Full Characterization of a Strange Attractor’, Physica D 48, 65–90.

    Google Scholar 

  • Schuster, P., Sigmund, K., Hofbauer, J., and Wolff, R.: 1981, ‘Selfregulation of Behavior in Animal Societies’, Biological Cybernetics 40, 1–25.

    Google Scholar 

  • Stratonovich, R.L.: 1963, 1967, Topics in the Theory of Random Noise, Vols. 1 and 2, Gordon and Breach, New York.

    Google Scholar 

  • Taylor, P. and Jonker, L.: 1978, ‘Evolutionarily Stable Strategies and Game Dynamics’, Math. Biosciences 40, 145–156.

    Google Scholar 

  • Topol, R.: 1991, ‘Bubbles and Volatility of Stock Prices: Effect of Mimetic Contagion’, The Economic Journal 101, 786–800.

    Google Scholar 

  • Weidlich, W: 1971, ‘The Statistical Description of Polarization Phenomena in Society’, Br. J. Math. Stat. Psychol. 24, 51ff.

  • Weidlich, W.: 1972, ‘The Use of Statistical Models in Sociology’, Collective Phenomena 1, 51–59.

    Google Scholar 

  • Weidlich, W.: 1991, ‘Physics and Social Science - The Approach of Synergetics’, Physics Reports 204, 1–163.

    Google Scholar 

  • Weidlich, W. and Braun, M.: 1992, ‘The Master Equation Approach to Nonlinear Economics’, Journal of Evolutionary Economics 2, 233–265.

    Google Scholar 

  • Weidlich, W. and Haag, G.: 1983, Concepts and Models of a Quantitative Sociology. The Dynamics of Interacting Populations, Springer, Berlin.

    Google Scholar 

  • Zeeman, E.C.: 1980, ‘Population Dynamics from Game Theory’, in: Global Theory of Dynamical Systems, Lecture Notes in Mathematics Vol. 819.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbing, D. A stochastic behavioral model and a ‘Microscopic’ foundation of evolutionary game theory. Theor Decis 40, 149–179 (1996). https://doi.org/10.1007/BF00133171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133171

Key words

Navigation