Skip to main content
Log in

Effects of local accelerations and baroclinity on the mean structure of the atmospheric boundary layer over the sea

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Substitution of the geostrophic wind by the actual upper wind in the equations of motion for the boundary layer implies less sensitivity of the mean wind to inertial effects. This is confirmed by observations, although the problem of computing time or spatial derivatives from scattered data reduces the accuracy and the clarity of the results. It is found that acceleration (deceleration) increases (decreases) the cross-isobar angle whereas the geostrophic drag coefficient is a minimum (maximum) for crosswind acceleration (deceleration). On the other hand, cold air advection increases the cross-isobar angle whereas the geostrophic drag coefficient is a maximum when the thermal wind is parallel to the surface wind. The universal functions A m and B m based on vertically averaged winds are also rather insensitive to inertial influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1975, Comments on ‘The influence of Geostrophic Shear on the Cross-Isobar Angle of the Surface Wind’, Boundary-Layer Meteorol. 8, 239–242.

    Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary Layer Parameterization Schemes Used in Atmospheric Circulation Models’, Monthly Weather Rev. 105, 215–227.

    Google Scholar 

  • Arya, S. P. S.: 1978, ‘Comparative Effects of Stability, Baroclinity, and the Scale-Height Ratio on Drag Laws for the Atmospheric Boundary Layer’, J. Atmos. Sci. 35, 40–46.

    Google Scholar 

  • Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’, J. Atmos. Sci. 32, 767–778.

    Google Scholar 

  • Augstein, E. and Heinricy, D.: 1976, ‘Actual and Geostrophic Wind Relationships in an Accelerated Marine Atmospheric Boundary Layer’, Beitr. Phys. Atmos. 49, 55–68.

    Google Scholar 

  • Bernstein, A. B.: 1973, ‘Some Observations of the Influence of Geostrophic Shear on the Cross-Isobar Angle of the Surface Wind’, Boundary-Layer Meteorol. 3, 381–384.

    Google Scholar 

  • Billard, C., André, J. C., and du Vachat, R.: 1981, ‘On the Similarity Functions A and B as Determined from the ‘Voves’ Experiment’, Boundary-Layer Meteorol. 21, 495–507.

    Google Scholar 

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Charney, J. G. and Eliassen, A.: 1949, ‘A Numerical Method for Predicting the Perturbations of the Middle-Latitude Westerlies’, Tellus 1, 38–54.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Deardorff, J. W.: 1983, Comments on ‘The Daytime Planetary Boundary Layer; a New Interpretation of Wangara Data’, Quart. J. R. Meteorol. Soc. 109, 677–678.

    Google Scholar 

  • Garratt, J. R., Wyngaard, J. C., and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer — Prediction and Observation’, J. Atmos. Sci. 39, 1307–1316.

    Google Scholar 

  • Hasse, L.: 1976, ‘A Resistance-Law Hypothesis for the Non-Stationary Advective Planetary Boundary Layer’, Boundary-Layer Meteorol. 10, 393–407.

    Google Scholar 

  • Hoxit, L. R.: 1974, ‘Planetary Boundary Layer Winds in Baroclinic Conditions’, J. Atmos. Sci. 31, 1003–1020.

    Google Scholar 

  • Joffre, S. M.: 1981, ‘The Physics of the Mechanically-Driven Atmospheric Boundary Layer as an Example of Air-Sea Ice Interactions’, Report No. 20, Univ. Helsinki, Dept. of Meteorol., 75 pp.

  • Joffre, S. M.: 1982a, ‘Momentum and Heat Transfers in the Surface Layer over a Frozen Sea’, Boundary-Layer Meteorol. 24, 211–229.

    Google Scholar 

  • Joffre, S. M.: 1982b, ‘Assessment of the Separate Effects of Baroclinity and Thermal Stability in the Atmospheric Boundary Layer over the Sea’, Tellus 34, 567–578.

    Google Scholar 

  • Kao, S. K.: 1974, ‘Basic Characteristics of Global Scale Diffusion in the Troposphere’, in Adv. Geophys. 18B, Academic Press, New York, pp. 15–32.

    Google Scholar 

  • Kondo, J.: 1977, ‘Geostrophic Drag and the Cross-Isobar Angle of the Surface Wind in a Baroclinic Convective Boundary Layer over the Ocean’, J. Meteorol. Soc. Japan 55, 301–311.

    Google Scholar 

  • Mahrt, L. J.: 1974, ‘Time-Dependent, Integrated Planetary Boundary Layer Flow’, J. Atmos. Sci. 31, 457–464.

    Google Scholar 

  • Mahrt, L. J.: 1975, ‘The Influence of Momentum Advections on a Well-Mixed Layer’, Quart. J. R. Met. Soc. 101, 1–11.

    Google Scholar 

  • Naistat, R. J. and Young, J. A.: 1973, ‘A Linear Model of Boundary Layer Airflow during the St. Patrick's Day Storm of 1965’, J. Appl. Meteor. 12, 1151–1162.

    Google Scholar 

  • MacKay, K. P.: 1971, ‘Steady State Hodographs in a Baroclinic Boundary Layer’, Boundary-Layer Meteorol. 2, 161–168.

    Google Scholar 

  • Thompson, R. O. R. Y.: 1974, ‘The Influence of Geostrophic Shear on the Cross-Isobar Angle of the Surface Wind’, Boundary-Layer Meteorol. 6, 515–518.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joffre, S.M. Effects of local accelerations and baroclinity on the mean structure of the atmospheric boundary layer over the sea. Boundary-Layer Meteorol 32, 237–255 (1985). https://doi.org/10.1007/BF00121881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121881

Keywords

Navigation