Skip to main content
Log in

Divergence of chloroplast gene organization in three legumes: Pisum sativum, Vicia faba and Phaseolus vulgaris

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Summary

Isolated chloroplasts from Pisum sativum were found to contain at least 32 tRNA species. Hybridization of in vitro labeled, identified, chloroplast tRNAs to Pisum chloroplast DNA fragments revealed the locations of the tRNA genes on the circular chloroplast genome. Comparison of this gene map to the maps of Vicia faba and Phaseolus vulgaris showed that the chloroplast genomes of Pisum and Phaseolus are otherwise more closely related than either genome is to the chloroplast genome of Vicia. Furthermore, the results suggest how possible recombination events could be involved in the evolution of these three closely related, but divergent, chloroplast genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bohnert HJ, Crouse EJ, Schmitt JM: Organization and expression of plastid genomes. In: Parthier B and Boulter D (eds) 14B Encyclopedia of plant physiology. Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp 475–530.

    Google Scholar 

  2. Bookjans G, Stummann BM, Henningsen KW: Preparation of chloroplast DNA from pea plastids isolated in a medium of high ionic strength. Anal Biochem 141: 244–247, 1984.

    Google Scholar 

  3. Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse EJ, Weil JH: Resolution of chloroplast transfer RNAs by two-dimensional gel electrophoresis. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam-New York-Oxford, 1982, pp 347–357.

    Google Scholar 

  4. Chu NM, Oishi K, Tewari KK: Physical mapping of the pea chloroplast DNA and localization of the ribosomal RNA genes. Plasmid 6:279–292, 1981.

    Google Scholar 

  5. Chu NM, Shapiro DR, Oishi KK, Tewari KK: Distribution of transfer RNA genes in the Pisum sativum chloroplast DNA. Plant Mol Biol 4:65–70, 1985.

    Google Scholar 

  6. Crick FHC: Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555, 1966.

    Google Scholar 

  7. Crouse EJ, Bohnert HJ, Schmitt JM: Chloroplast RNA synthesis. In: Ellis RJ (ed) Chloroplast biogenesis, Seminar series of the society for experimental biology, Vol 21. Univ Press, Cambridge, 1984, pp 83–136.

    Google Scholar 

  8. Crouse EJ, Schmitt JM, Bohnert HJ: Chloroplast and cyanobacterial genomes, genes and RNAs: a compilation. Plant Mol Biol Reporter 3:43–89, 1985.

    Google Scholar 

  9. Holschuh K, Bottomley W, Whitfeld PR: Sequence of the genes for tRNACys and tRNAAsp from spinach chloroplasts. Nucleic Acids Res 24:8547–8554, 1983.

    Google Scholar 

  10. Huttley AK, Gray JC: Localisation of genes for four ATP synthase subunits in pea chloroplast DNA. Mol Gen Genet 194:402–409, 1984.

    Google Scholar 

  11. Ko K, Straus NA, Williams JP: The localization and orientation of specific genes in the chloroplast chromosome of Vicia faba. Curr Genet 8:359–367, 1984.

    Google Scholar 

  12. Koller B, Delius H: Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269, 1980.

    Google Scholar 

  13. Meeker R, Tewari KK: Transfer ribonucleic acid genes in the chloroplast deoxyribonucleic acid of pea leaves. Biochemistry 19:5973–5981, 1980.

    Google Scholar 

  14. Meeker R, Tewari KK: Divergence of tRNA genes in chloroplast DNA of higher plants. Biochim Biophys Acta 696:66–75, 1982.

    Google Scholar 

  15. Mubumbila M, Burkard G, Keller M, Steinmetz A, Crouse EJ, Weil JH: Hybridization of bean, spinach, maize and Euglena chloroplast tRNAs with homologous and heterologous chloroplast DNAs: An approach to the study of homology between chloroplast tRNAs from various species. Biochim Biophys Acta 609:31–39, 1980.

    Google Scholar 

  16. Mubumbila M, Crouse EJ, Weil JH: Transfer RNAs and tRNA genesof Vicia faba chloroplasts. Curr Genet 8:379–385, 1984.

    Google Scholar 

  17. Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH: Construction of the physical map of the chloroplast DNA of Phaseolus vulgaris and localization of ribosomal and transfer RNA genes. Gene 21:257–266, 1983.

    Google Scholar 

  18. Palmer JD: Chloroplast DNA exists in two orientations. Nature 301:92–93, 1983.

    Google Scholar 

  19. Palmer JD, Thompson WF: Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537, 1981.

    Google Scholar 

  20. Palmer JD, Thompson WF: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550, 1982.

    Google Scholar 

  21. Palmer JD, Singh GP, Pillay DTN: Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet 190:13–19, 1983.

    Google Scholar 

  22. Rasmussen OF, Stummann BM, Henningsen KW: Nucleotide sequence of a 1.1 kb fragment of the pea chloroplast genome containing three tRNA genes, one of which is located within an open reading frame of 91 codons. Nucleic Acids Res 12:9143–9153, 1984.

    Google Scholar 

  23. Rether B, Bonnet J, Ebel JP: Studies on tRNA nucleotidyl transferase from Baker's yeast. I. Purification of the enzyme. Protection against thermal inactivation and inhibition by several substrates. Eur J Biochem 50:281–288, 1974.

    Google Scholar 

  24. Shinozaki K, Sun CR, Sugiura M: Gene organization of chloroplast DNA from broad bean Vicia foba. Mol Gen Genet 197:363–367, 1984.

    Google Scholar 

  25. Silberklang M, Gillum AM, RajBhandary UL: The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res 4:4091–4108, 1977.

    Google Scholar 

  26. Steinmetz A, Bonnard G, Kuntz M, Green GA, Mubumbila M, Crouse EJ, Weil JH: Organization and sequence of transfer RNA genes in the broad-bean chloroplast genome. In: Steinback KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1985, pp 279–284.

    Google Scholar 

  27. Whitfeld PR, Bottomley W: Organization and structure of chloroplast genes. Annu Rev Plant Physiol 34:279–310, 1983.

    Google Scholar 

  28. Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W: Nucleotide sequence of the gene for the 32000-Mr thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr38950. Proc Natl Acad Sci USA 79:7699–7703, 1982.

    Google Scholar 

  29. Zurawski G, Bottomley W, Whitfeld PR: Structure of the genes for the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79:6260–6264, 1982.

    Google Scholar 

  30. Zurawski G, Perot B, Bottomley W, Whitfeld PR: The structure of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res 9:3251–3270, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crouse, E.J., Mubumbila, M., Stummann, B.M. et al. Divergence of chloroplast gene organization in three legumes: Pisum sativum, Vicia faba and Phaseolus vulgaris . Plant Mol Biol 7, 143–149 (1986). https://doi.org/10.1007/BF00040140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040140

Keywords

Navigation