Skip to main content
Log in

Purification and characterization of a tRNA nucleotidyltransferase from Lupinus albus and functional complementation of a yeast mutation by the corresponding cDNA

  • Research article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25) was purified to apparent homogeneity from a crude extract of Lupinus albus seeds. Purification was accomplised using a multistep protocol including ammonium sulfate fractionation and chromatography on anion-exchange, hydroxylapatite and affinity columns. The lupin enzyme exhibited a pH optimum and salt and ion requirements that were similar to those of tRNA nucleotidyltransferases from other sources. Oligonucleotides, based on partial amino acid sequence of the purified protein, were used to isolate the corresponding cDNA. The cDNA potentially encodes a protein of 560 amino acids with a predicted molecular mass of 64164 Da in good agreement with the apparent molecular mass of the pure protein determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The size and predicted amino acid sequence of the lupin enzyme are more similar to the enzyme from yeast than from Escherichia coli with some blocks of amino acid sequence conserved among all three enzymes. Functionality of the lupin cDNA was shown by complementation of a temperature-sensitive mutation in the yeast tRNA nucleotidyltransferase gene. While the lupin cDNA compensated for the nucleocytoplasmic defect in the yeast mutant it did not enable the mutant strain to grow at the non-permissive temperature on a non-fermentable carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aebi M, Kirchner G, Chen JY, Vijayraghavan U, Jacobson A, Martin NC, Abelson J: Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 265: 16216–16220 (1990).

    Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).

    Google Scholar 

  3. Bewsey KE, Johnson ME, Huff JP: Rapid isolation and purification of DNA from agarose gels: the phenol-freezefracture method. Bio Techniques 10: 724–725 (1991).

    Google Scholar 

  4. Bower S, Perkins J, Yocum RR, Serror P, Sorokin A, Rahaim P, Howitt CL, Prasad N, Ehrlich SD, Pero J: Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J Bact 177: 2572–2575 (1995).

    Google Scholar 

  5. Bowler C, Alliotte T, Van den Bulcke M, Bauw G, Vandekerckhove J, Van Montague M, Inzé D: A plant manganese superoxide dismutase is effiently imported and correctly processed by yeast mitochondria. Proc Natl Acad Sci USA 86: 3237–3241 (1989).

    Google Scholar 

  6. Brink S, Flügge U-I, Chaumont F, Boutry M, Emmermann M, Schmitz U, Becker K, Pfanner N: Preproteins of chloroplast inner membrane contain targeting information for receptor-dependent import into fungal mitochondria. J Biol Chem 269: 16478–16485 (1994).

    Google Scholar 

  7. Carre DS, Litvak S, and Chapeville F: Purification and properties of Escherichia coli CTP(ATP)-tRNA nucleotidyltransferase. Biochim Biophys Acta 224: 371–381 (1970).

    Google Scholar 

  8. Chaumont F, O'Riordan V, Boutry M: Protein transport into mitochondria is conserved between plant and yeast species. J Biol Chem 265: 16854–16862 (1990).

    Google Scholar 

  9. Chen JY, Kirchner G, Aebi M, Martin NC: Purification and properties of yeast ATP(CTP):tRNA nucleotidyltransferase from wild type and overproducing cells. J Biol Chem 265: 16221–16224 (1990).

    Google Scholar 

  10. Chen JY, Joyce PBM, Wolfe CL, Steffen MC, Martin NC: Cytoplasmic and mitochondrial tRNA nucletidyltransferase activities are derived from the same gene in the yeast Saccharomyces cerevisiae. J Biol Chem 267: 14879–14883 (1992).

    Google Scholar 

  11. Cudny H, Pietrzak M, Bartkowiak S: t-RNA-nucleotidyltransferase activity in Lupinus luteus seeds. Phytochemistry 14: 85–87 (1975).

    Google Scholar 

  12. Cudny H, Pietrzak M, Kaczkowski J: Plant tRNA nucleotidyltransferase I. Isolation and purification of tRNA nucleotidyltransferase from Lupinus luteus seeds. Planta 142: 23–27 (1978).

    Google Scholar 

  13. Cudny H, Pietrzak M, Kaczkowski J: Plant tRNA nucleotidyltransferase. II. Some properties of the purified enzyme from Lupinus luteus seeds. Planta 142: 29–36 (1978).

    Google Scholar 

  14. Cudny H, Lupski JR, Godson GN, Deutscher MP: Cloning, sequencing and species relatedness of the Escherichia coli cca gene encoding the enzyme tRNA nucleotidyltransferase. J Biol Chem 261: 6444–6449 (1986).

    Google Scholar 

  15. Deutscher MP: Reactions at the 3′ terminus of transfer ribonucleic acid. III. Catalytic properties of two purified rabbit liver transfer ribonucleic acid nucleotidyltransferases. J Biol Chem 247: 459–468 (1972).

    Google Scholar 

  16. Deutscher M, Foulds J, McClain WH: Transfer ribonucleic acid nucleotidyltransferase plays an essential role in the normal growth of Escherichia coli and in the biosynthesis of some bacteriophage T4 transfer ribonucleic acids. J Biol Chem 249: 6696–6699 (1974).

    Google Scholar 

  17. Dullin P, Fabisz-Kijowska A, Walerych W: Isolation and properties of tRNA nucleotidyltransferase from wheat embryos. Acta Biochim Polon 22: 279–289 (1975).

    Google Scholar 

  18. Ellerström M, Josefsson L-G, Rask L, Ronne H: Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol 18: 557–566 (1992).

    Google Scholar 

  19. Feng DF, Doolittle RF: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360 (1987).

    Google Scholar 

  20. Hanic-Joyce PJ, Gray MW: Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem 265: 13782–13791 (1990).

    Google Scholar 

  21. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res. 15: 9627–9640 (1987).

    Google Scholar 

  22. Knapp G, Beckmann JS, Johnson PF, Fuhrman SA, Abelson J: Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14: 221–236 (1978).

    Google Scholar 

  23. Komine Y, Adachi T, Inokuchi H, Ozeki H: Genomic organization and physiocal mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol 212: 579–598 (1990).

    Google Scholar 

  24. Leineweber M, Philipps GR: Comparison of tRNA ucleotidyltransferase from Escherichia coli and Lactobacillus acidophilus. Hoppe-Seyler's Z Physiol Chem 359: 473–480 (1978).

    Google Scholar 

  25. Liu J, Parkinson JS: Genetics and sequence analysis of the pcnB locus, an Escherichia coli gene involved in plasmid copy number control. J Bact 171: 1254–1261 (1989).

    Google Scholar 

  26. Mack M, Bendrat K, Zelder O, Eckel E, Linder D, Buckel W: Location of two genes encoding glutaconate coenzyme A-transferase at the beginning of the hydroxyglutarate operon in Acidaminococcus fermentans. Eur J Biochem 226: 41–51 (1994).

    Google Scholar 

  27. Maisiakowski P, Deutscher MP: Dissection of the active site of rabbit liver tRNA nucleotidyltransferase. Specificity and properties of the tRNa and acceptor subsites determined with model acceptor substrates. J Biol Chem 255: 11233–11239 (1980).

    Google Scholar 

  28. Masters M, March JB, Oliver IR, Collins JF: A possible role for the pcnB gene product of Escherichia coli in modulating RNA:RNA interactions. Mol Gen Genet 220: 341–344 (1990).

    Google Scholar 

  29. Miller JP, Philipps GR: Transfer ribonucleic acid nucleotidyltransferase from Escherichia coli. J Biol Chem 246: 1274–1279 (1971).

    Google Scholar 

  30. Myers AM, Pape LK, Tzagoloff A: Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J 4: 2087–2092 (1985).

    Google Scholar 

  31. Peebles CL, Ogden RC, Knapp G, Abelson J: Splicing of yeast tRNA precursors: a two-stage reaction. Cell 18: 27–35 (1979).

    Google Scholar 

  32. Poblete P, Jedlicky E, Lival S: Purification and properties of tRNA nucleotidyltransferase from Musca domestica. Biochim Biophys Acta 476: 333–341 (1977).

    Google Scholar 

  33. Raikhel N: Nuclear targeting in plants. Plant Physiol 100: 1627–1632 (1992).

    Google Scholar 

  34. Rosset R, and Monier R: Instabilité de la séquence 3′-hydroxyle terminale du RNA de transfert chez les microorganismes. I. Renouvellement de l'AMP terminal chez Saccharomyces cerevisiae. Biochim Biophys Acta 108: 385–393 (1965).

    Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  36. Schiestl RH, Gietz RD: High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16: 339–346 (1989).

    Google Scholar 

  37. Schofield P, Williams KR: Purification and some properties of Escherichia coli tRNA nucleotidyltransferase. J Biol Chem 252: 5584–5588 (1977).

    Google Scholar 

  38. Sherman F: Getting started with yeast. Meth Enzymol 194: 3–21 (1991).

    Google Scholar 

  39. Smeekens S, van Steeg H, Bauerle C, Bettenbroek H, Keegstra K, Weisbeek P: Import into chloroplast of a yeast mitochondrial protein directed by ferrodoxin and plastocyanin transit peptides. Plant Mol Biol 9: 377–388 (1987).

    Google Scholar 

  40. Smith GS, Santana MA, Wallace-Cook ADM, Roper JM, Labbe-Bois R: Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidosis thaliana by functional complementation of a yeast mutant. J Biol Chem 269: 13405–13413 (1994).

    Google Scholar 

  41. Solari A, Deutscher MP: Subcellular localization of the tRNA processing enzyme, tRNA nucleotidyltransferase, in Xenopus laevis oocytes and in somatic cells. Nucl Acids Res 14: 4397–4407 (1982).

    Google Scholar 

  42. Steinberg S, Misch A, Sprinzl M: Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 13: 3011–3015 (1993).

    Google Scholar 

  43. van Loon APGM, Brandli AW, Pesold-Hurt B, Blank D, Schatz G: Transport of proteins to the mitochondrial intermembrane space: the ‘matrix-targeting’ and the ‘sorting domains’ in the cytochrome c 1 presequence. EMBO J 6: 2433–2439 (1987).

    Google Scholar 

  44. Varagona MJ, Raikhel NV: The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J 5: 207–214 (1994).

    Google Scholar 

  45. von Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    Google Scholar 

  46. Xu F, Lin-Chao S, Cohen SN: The Escherichia coli penB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci USA 90: 6756–6760 (1993).

    Google Scholar 

  47. Zhu L, Cudny H, Deutscher MP: A mutation in Escherichia coli tRNA nucleotidyltransferase that affects only AMP incorporation is in a sequence often associated with nucleotide-binding proteins. J Biol Chem 261: 14875–14877 (1986).

    Google Scholar 

  48. Zhu L, Deutscher MP: tRNA nucleotidyltransferase is not essential for Escherichia coli. EMBO J 6: 2473–2477 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanmugam, K., Hanic-Joyce, P.J. & Joyce, P.B.M. Purification and characterization of a tRNA nucleotidyltransferase from Lupinus albus and functional complementation of a yeast mutation by the corresponding cDNA. Plant Mol Biol 30, 281–295 (1996). https://doi.org/10.1007/BF00020114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020114

Key words

Navigation