Skip to main content
Log in

Molecular basis of disease susceptibility in the Texas cytoplasm of maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aranda G, Durlin P, Gauvrit C: Methomyl analogues with increased biological activity towards F7T maize mitochondria. Phytochemistry 26: 1909–1913 (1987).

    Article  Google Scholar 

  2. Bednarski MA, Izawa S, Scheffer RP: Reversible effects of toxin from Helminthosporium maydis race T on oxidative phosphorylation by mitochondria from maize. Plant Physiol 59: 540–545 (1977).

    Google Scholar 

  3. Bervillé A, Ghazi A, Charbonnier M, Bonavent J-F: Effects of methomyl and Helminthosporium maydis toxin on matrix volume, proton motive force, and NAD accumulation in maize (Zea mays L.) mitochondria. Plant Physiol 76: 508–517 (1984).

    Google Scholar 

  4. Bouthyette P-Y, Spitsberg V, Gregory P: Mitochondrial interaction with Helminthosporium maydis race T toxin: Blocking by dicyclohexylcarbodiimide. J Exp Bot 36: 511–528 (1985).

    Google Scholar 

  5. Braun CJ, Siedow JN, Levings CSIII: The T-urf13 gene is responsible for toxin sensitivity in maize and E. coli. In: Goldberg R (ed) The Molecular Basis of Plant Development, pp. 79–85. UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 92, Alan R. Liss, New York (1989).

    Google Scholar 

  6. Braun CJ, Siedow JN, Levings CSIII: Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli. Plant Cell 2: 153–161 (1990).

    Article  PubMed  Google Scholar 

  7. Braun CJ, Siedow JN, Williams ME, Levings CSIII: Mutations in the maize mitochondrial T-urf13 gene eliminate sensitivity to a fungal pathotoxin. Proc Natl Acad Sci USA 86: 4435–4439 (1989).

    PubMed  Google Scholar 

  8. Brettell RIS, Goddard BVD, Ingram DS: Selection of Tms-cytoplasm maize tissue cultures resistant to Drechslera maydis T-toxin. Maydica 24: 203–213 (1979).

    Google Scholar 

  9. Brettell RIS, Thomas E, Ingram DS: Reversion of Texas male-sterile cytoplasm maize in culture to give fertile, T-toxin resistant plants. Theor Appl Genet 58: 55–58 (1980).

    Google Scholar 

  10. Danko SJ, Kono Y, Daly JM, Suzuki Y, Takeuchi S, McCrery DA: Structure and biological activity of a host-specific toxin produced by the fungal corn pathogen Phyllosticta maydis. Biochemistry 23: 759–766 (1984).

    Google Scholar 

  11. Davidson VL, Brunden KR, Cramer WA, Cohen FS: Studies on the mechanism of action of channel-forming colicins using artificial membranes. J Membrane Biol 79: 105–118 (1984).

    Google Scholar 

  12. Dewey RE, Levings CSIII, Timothy DH: Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44: 439–449 (1986).

    Article  PubMed  Google Scholar 

  13. Dewey RE, Siedow JN, Timothy DH, Levings CSIII: A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science 239: 293–295 (1988).

    PubMed  Google Scholar 

  14. Dewey RE, Timothy DH, Levings CSIII: A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84: 5374–5378 (1987).

    Google Scholar 

  15. Duvick DN: Cytoplasmic pollen sterility in corn. In: Caspari EW, Thoday JM (eds) Advances in Genetics, vol 13, pp. 1–56. Academic Press, New York (1965).

    Google Scholar 

  16. Eckenrode VK, Levings CSIII: Maize mitochondrial genes and cytoplasmic male sterility. In: Bruening GJ, Harada J, Kosuge T, Hollaender A (eds) Tailoring Genes for Crop Improvement: An Agricultural Perspective, pp. 69–84. Plenum, New York (1987).

    Google Scholar 

  17. Eisenberg D: Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53: 595–623 (1984).

    Article  PubMed  Google Scholar 

  18. Engelman DM, Steitz TA, Goldman A: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Chem 15: 321–353 (1986).

    Article  Google Scholar 

  19. Fauron C, Havlik M: The maize mitochondrial genome of the normal type and the cytoplasmic male sterile type T have very different organization. Curr Genet 15: 149–154 (1989).

    Google Scholar 

  20. Fauron CM-R, Havlik M, Brettell RIS: The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124: 423–428 (1990).

    PubMed  Google Scholar 

  21. Fauron C, Havlik M, Lonsdale D, Nichols L: Mitochondrial genome organization of the maize cytoplasmic male sterile type T. Mol Gen Genet 216: 395–401 (1989).

    Article  Google Scholar 

  22. Flavell R: A model for the mechanism of cytoplasmic male sterility in plants, with special reference to maize. Plant Sci Lett 3: 259–263 (1974).

    Google Scholar 

  23. Forde BG, Leaver CJ: Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci USA 77: 418–422 (1980).

    Google Scholar 

  24. Forde BG, Oliver RJC, Leaver CJ: Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci USA 75: 3841–3845 (1978).

    Google Scholar 

  25. Fragoso LL, Nichols SE, Levings CSIII: Rearrangements in maize mitochondrial genes. Genome 31: 160–168 (1989).

    Google Scholar 

  26. Frantzen KA, Daly JM, Knoche HW: The binding of host-selective toxin analogs to mitochondria from normal and ‘Texas’ male sterile cytoplasm maize. Plant Physiol 83: 863–868 (1987).

    Google Scholar 

  27. Gengenbach BG, Green CE, Donovan CM: Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74: 5113–5117 (1977).

    Google Scholar 

  28. Glab N, Wise RP, Pring DR, Jacq C, Slonimski P: Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: Respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet 223: 24–32 (1990).

    Article  PubMed  Google Scholar 

  29. Guy HR: A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys J 45: 249–261 (1984).

    PubMed  Google Scholar 

  30. Hack E, Lin C, Yang H, Horner HT: T-URF13 protein from mitochondria of Texas male-sterile maize (Zea mays L.). Its purification and submitochondrial localization, and immunogold labeling in anther tapetum during microsporogenesis. Plant Physiol 95: 861–870 (1991).

    Google Scholar 

  31. Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR: Alamethicin: A rich model for channel behavior. Biophys J 45: 233–247 (1984).

    PubMed  Google Scholar 

  32. Harvey PH, Levings CSIII, Wernsman EA: The role of extrachromosomal inheritance in plant breeding. Adv Agron 24: 1–27 (1972).

    Google Scholar 

  33. Holden MJ, Sze H: Helminthosporium maydis T toxin increased membrane permeability to Ca2+ in susceptible corn mitochondria. Plant Physiol 75: 235–237 (1984).

    Google Scholar 

  34. Holden MJ, Sze H: Dissipation of the membrane potential in susceptible corn mitochondria by the toxin of Helminthosporium maydis, race T, and toxin analogs. Plant Physiol 84: 670–676 (1987).

    Google Scholar 

  35. Holden MJ, Sze H: Effects of Helminthosporium maydis race T toxin on electron transport in susceptible corn mitochondria and prevention of toxin actions by dicyclohexylcarbodiimide. Plant Physiol 91: 1296–1302 (1989).

    Google Scholar 

  36. Huang J, Lee S-H, Lin C, Medici R, Hack E, Myers AM: Expression in yeast of the T-URF13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J 9: 339–347 (1990).

    PubMed  Google Scholar 

  37. Ingledew WJ, Poole PK: The respiratory chains of Escherichia coli. Microbiol Rev 48: 222–271 (1984).

    PubMed  Google Scholar 

  38. Kennell JC, Pring DR: Initiation and processing of atp6, T-urf13 and ORF221 transcripts from mitochondria of T cytoplasm maize. Mol Gen Genet 216: 16–24 (1989).

    Article  Google Scholar 

  39. Kennell JC, Wise RP, Pring DR: Influence of nuclear background on transcription of a maize mitochondrial region associated with Texas male sterile cytoplasm. Mol Gen Genet 210: 399–406 (1987).

    Article  Google Scholar 

  40. Klein RR, Koeppe DE: Mode of methomyl and Bipolaris maydis (race T) toxin in uncoupling Texas male-sterile cytoplasm corn mitochondria. Plant Physiol 77: 912–916 (1985).

    Google Scholar 

  41. Koeppe DE, Cox JK, Malone CP: Mitochondrial heredity: A determinant in the toxic response of maize to the insecticide methomyl. Science 201: 1227–1229 (1978).

    Google Scholar 

  42. Kono Y, Daly JM. Characterization of the host-specific pathotoxin produced by Helminthosporium maydis race T, affecting corn with Texas male sterile cytoplasm. Bioorg Chem 8: 391–397 (1979).

    Article  Google Scholar 

  43. Kono Y, Suzuki Y, Takeuchi S, Knoche HW, Daly JM: Studies on the host-specific pathotoxins produced by H. maydis, race T and P. maydis: Absolute configuration of PM-toxins and HMT-toxins. Agric Biol Chem 49: 559–562 (1985).

    Google Scholar 

  44. Korth KL, Kaspi CI, Siedow JN, Levings CSIII: URF13, a maize mitochondrial pore-forming protein, is oligomeric and has a mixed orientation in Escherichia coli plasma membranes. Proc Natl Acad Sci USA 88: 10865–10869 (1991).

    PubMed  Google Scholar 

  45. Korth KL, Struck F, Kaspi CI, Siedow JN, Levings CSIII: Topological orientation of the membrane protein URF13. In: Herrmann RG, Larkins BA (eds) Plant Molecular Biology, pp. 375–381. Plenum, London (1991).

    Google Scholar 

  46. Laughnan JR, Gabay-Laughnan S: Cytoplasmic male sterility in maize. Annu Rev Genet 17: 27–48 (1983).

    Article  PubMed  Google Scholar 

  47. Leaver CJ, Gray MW: Mitochondrial genome organization and expression in higher plants. Annu Rev Plant Physiol 33: 373–402 (1982).

    Article  Google Scholar 

  48. Leaver CJ, Isaac PG, Small ID, Bailey-Serres J, Liddell AD, Hawkesford MJ: Mitochondrial genome diversity and cytoplasmic male sterility in higher plants. Phil Trans R Soc Lond B 319: 165–176 (1988).

    Google Scholar 

  49. Levings CSIII: The Texas cytoplasm of maize: Cytoplasmic male sterility and disease susceptibility. Science 250: 942–947 (1990).

    Google Scholar 

  50. Levings CSIII, Braun CJ: Insights into the Texas male-sterile cytoplasm of maize. In: Lord E, Bernier G (eds) Plant Reproduction: From Floral Induction to Pollination, vol. 1, pp. 121–127. Proceedings of the Twelfth annual Symposium in Plant Physiology. American Society of Plant Physiologists, Rockville, MD (1989).

    Google Scholar 

  51. Levings CSIII, Brown GG: Molecular biology of plant mitochondria. Cell 56: 171–179 (1989).

    Article  PubMed  Google Scholar 

  52. Levings CSIII, Dewey RE: Molecular studies of cytoplasmic male sterility in maize. Phil Trans R Soc Lond B 319: 177–185 (1988).

    Google Scholar 

  53. Lim SM, Hooker AL: Disease determinant of Helminthosporium maydis race T. Phytopathology 62: 968–971 (1972).

    Google Scholar 

  54. Lonsdale DM: A review of the structure and organization of the mitochondrial genome of higher plants. Plant Mol Biol 3: 201–206 (1984).

    Google Scholar 

  55. Lonsdale DM: The plant mitochondrial genome. In: Marcus A (ed) The Biochemistry of Plants, A Comprehensive Treatise. Molecular Biology, vol 15, pp. 229–295. Academic Press, New York (1989).

    Google Scholar 

  56. Matthews DE, Gregory P, Gracen VE: Helminthosporium maydis race T toxin induces leakage of NAD+ from T cytoplasm corn mitochondria. Plant Physiol 63: 1149–1153 (1979).

    Google Scholar 

  57. Menestrina G, Forti S, Gambale F: Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys J 55: 393–405 (1989).

    PubMed  Google Scholar 

  58. Miller RJ, Koeppe DE: Southern corn leaf blight: Susceptible and resistant mitochondria. Science 173: 67–69 (1971).

    Google Scholar 

  59. Nalecz MJ, Casey RP, Azzi A: Use of N,N′-dicyclohexylcarbodiimide to study membrane-bound enzymes. Meth Enzymol 125: 86–108 (1986).

    PubMed  Google Scholar 

  60. Newton KJ: Plant mitochondrial genomes: Organization, expression and variation. Annu Rev Plant Physiol Plant Mol Biol 39: 503–532 (1988).

    Article  Google Scholar 

  61. Ogata RT, McConnell HM: The binding of a spin-labeled triphosphate to hemoglobin. Cold Spring Harbor Symp Quant Biol 36: 325–336 (1972).

    PubMed  Google Scholar 

  62. Ojcius DM, Young JD-E: Cytolytic pore-forming proteins and peptides: Is there a common structural motif? Trends Biochem Sci 16: 225–229 (1991).

    Article  PubMed  Google Scholar 

  63. Pedersen PL, Carafoli E: Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12: 146–150 (1987).

    Article  Google Scholar 

  64. Peiffer WE, Ingle RT, Ferguson-Miller S: Structurally unique plant cytochrome c oxidase isolated from wheat germ, a rich source of plant mitochondrial enzymes. Biochemistry 29: 8696–8701 (1990).

    PubMed  Google Scholar 

  65. Peterson PA, Flavell RB, Barratt DHP: Altered mitochondrial membrane activities associated with cytoplasmically-inherited disease sensitivity in maize. Theor Appl Genet 45: 309–314 (1975).

    Article  Google Scholar 

  66. Pring DR, Gengenbach BG, Wise RP: Recombination is associated with polymorphism of the mitochondrial genomes of maize and sorghum. Phil Trans R Soc Lond B 319: 187–198 (1988).

    Google Scholar 

  67. Pring DR, Lonsdale DM: Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol 97: 1–46 (1985).

    Google Scholar 

  68. Pring DR, Lonsdale DM: Cytoplasmic male sterility and maternal inheritance of disease susceptibility in maize. Annu Rev Phytopathol 27: 483–502 (1989).

    Article  Google Scholar 

  69. Rogers JS, Edwardson JR: The utilization of cytoplasmic male-sterile inbreds in the production of corn hybrids. Agron J 44: 8–13 (1952).

    Google Scholar 

  70. Rottmann WH, Brears T, Hodge TP, Lonsdale DM: A mitochondrial gene is lost via homologous recombination during reversion of CMS T maize to fertility. EMBO J 6: 1541–1546 (1987).

    Google Scholar 

  71. Segel IH: Multisite and allosteric enzymes. In: Segel IH (ed) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems, pp. 346–384. Wiley Interscience, New York (1975).

    Google Scholar 

  72. Small I, Suffolk R, Leaver CJ: Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58: 69–76 (1989).

    Article  PubMed  Google Scholar 

  73. Stern DB, Palmer JD: Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81: 1946–1950 (1984).

    Google Scholar 

  74. Suzuki Y, Tegtmeier KJ, Daly JM, Knoche HW: Analogs of host-specific phytotoxin produced by Helminthosporium maydis, race T. II. Biological activities. Bioorg Chem 11: 313–321 (1982).

    Article  Google Scholar 

  75. Ullstrup AJ: The impacts of the southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10: 37–50 (1972).

    Article  Google Scholar 

  76. Umbeck PF, Gengenbach BG: Reversion of male-sterile T-cytoplasm maize to male fertility in tissue culture. Crop Sci 23: 584–588 (1983).

    Google Scholar 

  77. Wise RP, Fliss AE, Pring DR, Gengenbach BG: Urf13-T of T cytoplasm maize mitochondria encodes a 13 kD polypeptide. Plant Mol Biol 9: 121–126 (1987).

    Google Scholar 

  78. Wise RP, Pring DR, Gengenbach BG: Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84: 2858–2862 (1987).

    Google Scholar 

  79. Young EG, Hanson MR: A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50: 41–49 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levings, C.S., Siedow, J.N. Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Mol Biol 19, 135–147 (1992). https://doi.org/10.1007/BF00015611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015611

Key words

Navigation