Skip to main content

Water Security and Climate Change: Hydropower Reservoir Greenhouse Gas Emissions

  • Chapter
  • First Online:
Water Security Under Climate Change

Abstract

Water storage is a driver for economic growth and often mentioned as a proxy for water security. Hydropower storage projects deliver multiple benefits contributing to water and energy security; however, the reservoir creation raises concerns about greenhouse gas (GHG) emissions and puts in doubt how clean hydropower generation is. As storage becomes more relevant under climate change, adequate assessment is necessary to ensure projects’ sustainability. This study quantifies hydropower global median lifecycle greenhouse emissions at 23 gCO2e/kWh using the G-res Tool to estimate the net emission for 480 hydropower storage projects. This result is aligned with the IPCC estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakken TH, Modahl IS, Raadal HL, Bustos AA, Arnøy S (2016) Allocation of water consumption in multipurpose reservoirs. Water Policy 18(4):932–947

    Article  Google Scholar 

  • Benson D, Gain AK, Giupponi C (2020) Moving beyond water centricity? Conceptualizing integrated water resources management for implementing sustainable development goals. Sustain Sci 15(2):671–681

    Article  Google Scholar 

  • Berga L (2016) The role of hydropower in climate change mitigation and adaptation: a review. Engineering 2(3):313–318

    Article  Google Scholar 

  • Brown C, Lall U (2006) Water and economic development: the role of variability and a framework for resilience. In: Nat Resour Forum 30(4):306–317 (Oxford: Blackwell Publishing Ltd.)

    Google Scholar 

  • Carbon Monitor (2021). https://carbonmonitor.org/. Accessed 6 Feb 2021

  • Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serça D, Guerin F (2011) Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–5391

    Article  ADS  CAS  Google Scholar 

  • Climate Bonds Initiative (2019) Open for public consultation. The Hydropower Criteria. Climate Bonds Standard. https://www.climatebonds.net/hydropower. Accessed 6 Feb

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N et al (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66(11):949–964

    Google Scholar 

  • DFID (Department of International Development) (2009) Water storage and hydropower: supporting growth, resilience, and low carbon development (A DFID evidence‐into‐action paper). Policy Booklet

    Google Scholar 

  • European Commission (2020) Financing a Sustainable European Economy—taxonomy report: technical annex. https://ec.europa.eu/info/publications/sustainable-finance-teg-taxonomy_en Accessed 6 Feb 2021

  • FAO (2017) The future of food and agriculture: trends and challenges. FAO, Rome

    Google Scholar 

  • Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Chang 2:382–384

    Article  ADS  CAS  Google Scholar 

  • Hallegatte S, Shah A, Lempert C, Brown C, Gill S (2012) Investment decision making under deep uncertainty: application to climate change. Policy Research Working Paper 6193. Washington, DC: World Bank

    Google Scholar 

  • Hogeboom RJ, Knook L, Hoekstra AY (2018) The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv Water Resour 113:285–294

    Article  ADS  Google Scholar 

  • ICOLD (International Commission on Large Dams) (2021) World register of dams. General synthesis. https://www.icold-cigb.org/GB/world_register/general_synthesis.asp. Accessed 6 Feb 2021

  • IEA (2019) World energy outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019. Accessed 6 Feb 2021

  • IHA (International Hydropower Association) (2010) GHG measurement guidelines for freshwater reservoirs: derived from: the UNESCO/IHA greenhouse gas emissions from freshwater reservoirs research project. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2010) Hydropower sustainability assessment protocol. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2018) Hydropower status report 2018: sector trends and insights. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2018) Hydropower sustainability guidelines. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2019) Hydropower sector climate resilience guide. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2020) Hydropower status report 2020. International Hydropower Association, London

    Google Scholar 

  • IHA (International Hydropower Association) (2020) Hydropower sustainability environmental, social and governance gap analysis tool. International Hydropower Association, London

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 32 pp

    Google Scholar 

  • Landsvirkjun (2017) Theistareykir first geothermal power plant to undergo Geothermal Sustainability Assessment Protocol. https://www.landsvirkjun.com/company/mediacentre/news/news-read/theistareykir-first-geothermal-power-plant-to-undergo-gsap-sustainability-assessment. Accessed 6 Feb 2021

  • Lehner B, Reidy Liermann C, Revenga C, Vorosmarty C, Fekete B, Crouzet P, Doll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rodel R, Sindorf N, Wisser D (2011) Global Reservoir and Dam Database, Version 1 (GRanDv1): Dams, Revision 01. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4N877QK. Accessed 6 Feb

  • Levasseur A, Mercier-Blais S, Prairie Y, Tremblay A, Turpin C (2021) Improving the accuracy of electricity carbon footprint: estimation of hydroelectric reservoir greenhouse gas emissions. Renewable Sustain Energy Rev 136:110433

    Google Scholar 

  • Maeck A, Hofmann H, Lorke A (2014) Pumping methane out of aquatic sediments: ebullition forcing mechanisms in an impounded river. Biogeosciences 11:2925–2938

    Article  ADS  CAS  Google Scholar 

  • Mayor B, Rodríguez-Muñoz I, Villarroya F, Montero E, López-Gunn E (2017) The role of large and small scale hydropower for energy and water security in the Spanish Duero Basin. Sustainability 9(10):1807

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) The blue water footprint of electricity from hydropower. Hydrol Earth Syst Sci 16(1):179–187

    Article  ADS  Google Scholar 

  • Mendonça R, Kosten S, Sobek S, Barros N, Cole JJ, Tranvik L, Roland F (2012) Hydroelectric carbon sequestration. Nat Geosci 5:838–840

    Article  ADS  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  CAS  Google Scholar 

  • Patel S, Shakya C, Rai N (2020) Climate finance for hydropower: incentivising the low-carbon transition. http://pubs.iied.org/10203IIED. Accessed 10 Feb 2021

  • Pfister S, Scherer L, Buxmann K (2020) Water scarcity footprint of hydropower based on a seasonal approach-Global assessment with sensitivities of model assumptions tested on specific cases. Sci Total Environ 724:138188

    Google Scholar 

  • Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Wada Y (2021) Global terrestrial water storage and drought severity under climate change. Nat Clim Change 1–8. https://doi.org/10.1038/s41558-020-00972-w

  • Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole JJ, del Giorgio PA, DelSontro T, Guérin F, Harby A, Harrison J, Mercier-Blais S, Serça D, Sobek S, Vachon D (2018) Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21:1058–1071. https://doi.org/10.1007/s10021-017-0198-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prairie Y, Alm J, Harby A, Mercier-Blais S, Nahas R (2017) The GHG Reservoir Tool (G-res) Technical documentation, UNESCO/IHA research project on the GHG status of freshwater reservoirs. Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association

    Google Scholar 

  • Prairie YT, Mercier-Blais S, Harrison JA, Soued C, del Giorgio PA, Harby A, Alm J, Chanudret V, Nahas R (2021) A new modelling framework to assess biogenic GHG emissions from reservoirs: the G-res Tool. Environ Model Softw 143(105117):1–16. https://doi.org/10.1016/j.envsoft.2021.105117

  • Ray PA, Brown CM (2015) Confronting climate uncertainty in water resources planning and project design: the decision tree framework. World Bank, Washington, DC

    Book  Google Scholar 

  • Sarawak (2021) Sustainability and CSR. https://www.sarawakenergy.com/what-we-do/sustainability-csr. Accessed 10 Feb 2021

  • Sanctuary M, Tropp H, Haller L (2007) Making water a part of economic development: the economic benefits of improved water management and services. Stockholm International Water Institute (SIWI), Sweden

    Google Scholar 

  • Scherer L, Pfister S (2016) Global water footprint assessment of hydropower. Renew Energy 99:711–720

    Article  Google Scholar 

  • Thoradeniya B, Ranasinghe M, Wijesekera NTS (2007) Social and environmental impacts of a mini-hydro project on the Ma Oya Basin in Sri Lanka. In: International conference on small hydropower. Hydro Sri Lanka 22:24

    Google Scholar 

  • Ubierna M, Alarcón A, Alberti J (2020) Modernización de centrales hidroeléctricas en América Latina y el Caribe: Identificación y priorización de necesidades de inversión. Nota Técnica. Banco Interamericano de Desarrollo, Washington, DC

    Book  Google Scholar 

  • UN (United Nations) (2021) Goal 13: take urgent action to combat climate change and its impacts. COVID-19 response. https://www.un.org/sustainabledevelopment/climate-change/. Accessed 10 Feb 2021

  • UNEP (United Nations Environment Programme) (2019) Emissions Gap Report 2019. https://www.unenvironment.org/resources/emissions-gap-report-2019. Accessed 10 Feb 2021

  • Wenjie L, Dawei W, Shengfa Y, Wei Y (2020) Three Gorges Project: benefits and challenges for shipping development in the upper Yangtze River. Int J Water Resour Dev. https://doi.org/10.1080/07900627.2019.1698411

    Article  Google Scholar 

  • World Bank (2021) Resilience rating system: a methodology for building and tracking resilience to climate change. https://openknowledge.worldbank.org/handle/10986/35039. Accessed 10 Feb 2021

  • World Commission on Dams (2000) Dams and development. A new framework for decision-making. The Report of the World Commission on Dams. London: Earthscan

    Google Scholar 

  • Xiaocheng F, Tao T, Wanxiang J, Fengqing L, Naicheng W, Shuchan Z, Qinghua C (2008) Impacts of small hydropower plants on macroinvertebrate communities. Acta Ecol Sin 28(1):45–52

    Article  Google Scholar 

  • Zhao D, Liu J (2015) A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services. Phys Chem Earth 79:40–46

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was based on the previous work carried out by ex IHA staff members, Mathis Rogner and Emma Smith, under the funded UNESCO/IHA research project on the GHG status of freshwater reservoirs and published in the IHA Hydropower Status Report 2018 (IHA 2018b).

Declaration of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ubierna .

Editor information

Editors and Affiliations

Annex

Annex

Distribution of the installed capacity of study dataset and IHA Global Hydropower Station database and expected values to perform Chi-Square test

Installed capacity

Study dataset

IHA database

 

Study dataset expected values

# Stations

# Stations

Distribution

# Stations

100

268

10,357

0.841006902

404

200

72

810

0.065773447

32

300

35

351

0.028501827

14

400

21

180

0.014616322

7

500

12

117

0.009500609

5

600

10

87

0.007064555

3

700

2

49

0.003978888

2

800

5

46

0.003735282

2

900

4

37

0.003004466

1

1000

1

41

0.003329273

2

1100

9

37

0.003004466

1

1200

2

41

0.003329273

2

1300

5

28

0.00227365

1

1400

5

14

0.001136825

1

1500

3

14

0.001136825

1

1600

2

9

0.000730816

0

1700

2

8

0.000649614

0

1800

1

8

0.000649614

0

1900

0

9

0.000730816

0

2000

0

7

0.000568413

0

2100

2

5

0.000406009

0

2200

1

4

0.000324807

0

2300

0

1

8.12018E−05

0

2400

3

8

0.000649614

0

2500

2

7

0.000568413

0

2600

0

3

0.000243605

0

2700

0

1

8.12018E−05

0

2800

1

2

0.000162404

0

2900

2

2

0.000162404

0

3000

0

4

0.000324807

0

>3000

10

28

0.00227365

1

Total

480

12,315

  

Chi-Square test

7.89169E−87

Distribution of climate zones of study dataset and GRanD database and expected values to perform Chi-Square test

 

Study dataset

GRanD database

Study dataset expected values

Climate

# Stations

# Stations

Distribution

# Stations

Boreal

69

291

0.190445

91.4136

Temperate

338

1056

0.691099

331.728

Subtropical

30

46

0.030105

14.4503

Tropical

43

135

0.088351

42.4084

Total

480

1528

  

Chi-Square test p value

5.5E−05

Distribution of surface area of study dataset and GRanD database and expected values to perform Chi-Square test

 

Study dataset

GRanD database

 

Study dataset expected values

Surface area

# Stations

# Stations

Distribution

# Stations

20

249

997

0.652486911

313.1937173

40

64

156

0.102094241

49.0052356

60

31

82

0.053664921

25.7591623

80

17

37

0.02421466

11.62303665

100

14

25

0.016361257

7.853403141

120

10

19

0.012434555

5.968586387

140

10

20

0.013089005

6.282722513

160

4

12

0.007853403

3.769633508

180

7

13

0.008507853

4.083769634

200

5

15

0.009816754

4.712041885

220

5

9

0.005890052

2.827225131

240

5

11

0.007198953

3.455497382

260

6

8

0.005235602

2.513089005

280

2

6

0.003926702

1.884816754

300

2

7

0.004581152

2.19895288

320

2

4

0.002617801

1.256544503

340

1

4

0.002617801

1.256544503

360

1

2

0.001308901

0.628272251

380

3

3

0.001963351

0.942408377

400

2

3

0.001963351

0.942408377

420

2

3

0.001963351

0.942408377

440

0

3

0.001963351

0.942408377

460

1

1

0.00065445

0.314136126

480

0

2

0.001308901

0.628272251

500

1

2

0.001308901

0.628272251

520

3

4

0.002617801

1.256544503

540

0

2

0.001308901

0.628272251

560

0

2

0.001308901

0.628272251

580

0

2

0.001308901

0.628272251

600

0

2

0.001308901

0.628272251

>600

33

72

0.047120419

22.61780105

Total

480

1528

  

Chi-Square test

0.000708537

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ubierna, M., Santos, C.D., Mercier-Blais, S. (2022). Water Security and Climate Change: Hydropower Reservoir Greenhouse Gas Emissions. In: Biswas, A.K., Tortajada, C. (eds) Water Security Under Climate Change. Water Resources Development and Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-5493-0_5

Download citation

Publish with us

Policies and ethics