Skip to main content

Human Settlements: Urban Challenges and Future Development

  • Chapter
  • First Online:
Human Settlements

Abstract

Human settlements are comprehensive, i.e., shaped by human ecology and the relationship between humans as a social being and biological organisms and their interaction with their environments. This chapter explores urban morphology and landscape ecology as a pretext to a wider examination of the vast scholarship of why humans settle where they settle—with the focus on cities. The movement away from rural to urban is considered in conjunction with urban energy use, agriculture and food security, and sustainability. Maladaptation to climate change is considered in the context to urban environmental pollution, human health and well-being, and quality of life. Cities have a unique opportunity to advance policies that ensure the energy supply and food production are reliable, affordable, and environmentally sustainable. In terms of energy research, direct effects on people, communities, and countries in terms of economic growth, health, safety, the environment, education, and employment are investigated. Agricultural data is presented from a global perspective with specific land use and land cover specificities. Food security, food health, and food production are interfaced with regional populations and agricultural land use. An overview of cities from the Global North versus the Global South is assessed in terms developmental parameters—including city-to-city climate action. These city variances, specific to developed and developing countries, indicate megacities in the North have relatively high affluent and stable populations while those in the South have rapid expanding and overcrowded ones. Case-specific research into the effects of the COVID-19 pandemic on informal settlements is looked at in terms of direct and indirect impacts. The complexity of these issues signposts different types of human settlements and conditions and veers toward piecing together the urban challenges and future development of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chokhachian A, Perini K, Giulini S, Auer T (2020) Urban performance and density: generative study on interdependencies of urban form and environmental measures. Sustain Cities Soc 53:101952. https://doi.org/10.1016/j.scs.2019.101952

  2. D’Acci L (2019) On urban morphology and mathematics. In: Modeling and simulation in science, engineering and technology. Springer, Zurich, pp 1–18

    Google Scholar 

  3. World Bank (2021) Urban population (% of total population). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS. Accessed 14 Mar 2021

  4. UN-Habitat (2014) Energy: the challenge. In: United Nations humanities settlements program. https://unhabitat.org/topic/energy. Accessed 15 Mar 2021

  5. Privitera R, Palermo V, Martinico F et al (2018) Towards lower carbon cities: urban morphology contribution in climate change adaptation strategies. Eur Plan Stud 26:812–837. https://doi.org/10.1080/09654313.2018.1426735

    Article  Google Scholar 

  6. Shi Z, Fonseca JA, Schlueter A (2017) A review of simulation-based urban form generation and optimization for energy-driven urban design. Build Environ 121:119–129. https://doi.org/10.1016/j.buildenv.2017.05.006

    Article  Google Scholar 

  7. United Nations (2017) The World’s cities in 2018: data booklet. In: United Nations department of economics and social affairs. https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf. Accessed 15 Mar 2021

  8. Salat S (2009) Energy loads, CO2 emissions and building stocks: Morphologies, typologies, energy systems and behaviour. Build Res Inf 37:598–609. https://doi.org/10.1080/09613210903162126

    Article  Google Scholar 

  9. Evans G (2009) Creative cities, creative spaces and urban policy. Urban Stud 46:1003–1040. https://doi.org/10.1177/0042098009103853

    Article  Google Scholar 

  10. Yigitcanlar T, O’Connor K, Westerman C (2008) The making of knowledge cities: Melbourne’s knowledge-based urban development experience. Cities 25:63–72. https://doi.org/10.1016/j.cities.2008.01.001

    Article  Google Scholar 

  11. Yigitcanlar T, Velibeyoglu K, Martinez-Fernandez C (2008) Rising knowledge cities: the role of urban knowledge precincts. J Knowl Manag 12:8–20. https://doi.org/10.1108/13673270810902902

    Article  Google Scholar 

  12. Israilidis J, Odusanya K, Mazhar MU (2021) Exploring knowledge management perspectives in smart city research: a review and future research agenda. Int J Inf Manage 56:101989. https://doi.org/10.1016/j.ijinfomgt.2019.07.015

  13. Hall T, Barrett H (2018) Urban Geography, 5th edn. Routledge, New York

    Book  Google Scholar 

  14. Oliveira V (2019) An historico-geographical theory of urban form. J Urban Int Res Placemaking Urban Sustain 12:412–432. https://doi.org/10.1080/17549175.2019.1626266

    Article  Google Scholar 

  15. Kropf K (2018) The handbook of urban morphology. Wiley, West Sussex

    Google Scholar 

  16. Kropf K (2013) Urbanism, politics and language: the role of urban morphology. Riv Geogr Ital 69:117–132

    Google Scholar 

  17. Trache H (2001) Promoting urban design in development plans: Typo-morphological approaches in Montreuil, France. Urban Des Int 6:157–172. https://doi.org/10.1057/palgrave.udi.9000052

    Article  Google Scholar 

  18. Zhang Y, Li X (2020) What new insights can the combination of the historico-geographical and configurational approaches to urban morphology offer? Dublin Hist Rec 88:84–96

    Google Scholar 

  19. Rashid M (2019) Space syntax: a network-based configurational approach to studying urban morphology. In: Modeling and simulation in science, engineering and technology. Springer, Zurich, pp 199–251

    Google Scholar 

  20. Boeing G (2021) Spatial information and the legibility of urban form: Big data in urban morphology. Int J Inf Manage 56:102013. https://doi.org/10.1016/j.ijinfomgt.2019.09.009f

  21. Zaki SA, Azid NS, Shahidan MF et al (2020) Analysis of urban morphological effect on the microclimate of the urban residential area of Kampung Baru in Kuala Lumpur using a geospatial approach. Sustainability 12:7301. https://doi.org/10.3390/su12187301

    Article  Google Scholar 

  22. Gergel SE, Turner MG (2017) Learning landscape ecology. Springer, New York

    Book  Google Scholar 

  23. Ingegnoli V (2013) Landscape ecology: a widening foundation. Springer, Berlin

    Google Scholar 

  24. Naveh Z, Lieberman AS (2013) Landscape ecology: theory and application. Springer, New York

    Google Scholar 

  25. Forman RT (2014) Urban ecology: science of cities. Cambridge University Press, Cambridge

    Google Scholar 

  26. Azhdari A, Soltani A, Alidadi M (2018) Urban morphology and landscape structure effect on land surface temperature: evidence from Shiraz, a semi-arid city. Sustain Cities Soc 41:853–864. https://doi.org/10.1016/j.scs.2018.06.034

    Article  Google Scholar 

  27. Russo A, Cirella GT (2019) Edible urbanism 5.0. Palgrave Commun 5:1–9. https://doi.org/10.1057/s41599-019-0377-8

    Article  Google Scholar 

  28. Russo A, Cirella GT (2018) Modern compact cities: how much greenery do we need? Int J Environ Res Public Health 15:2180. https://doi.org/10.3390/ijerph15102180

    Article  Google Scholar 

  29. Deakin M, Reid A (2018) Smart cities: under-gridding the sustainability of city-districts as energy efficient-low carbon zones. J Clean Prod 173:39–48. https://doi.org/10.1016/j.jclepro.2016.12.054

    Article  Google Scholar 

  30. Cobbinah PB, Gaisie E, Owusu-Amponsah L (2015) Peri-urban morphology and indigenous livelihoods in Ghana. Habitat Int 50:120–129. https://doi.org/10.1016/j.habitatint.2015.08.002

    Article  Google Scholar 

  31. Cirella GT, Iyalomhe F, Jensen A, Akiyode O (2018) Exploring community of practice in Uganda’s public sector: environmental impact assessment case study. Sustainability 10:2502. https://doi.org/10.3390/su10072502

    Article  Google Scholar 

  32. Cirella GT, Iyalomhe FO (2018) Flooding conceptual review: sustainability-focalized best practices in Nigeria. Appl Sci 8:1558. https://doi.org/10.3390/app8091558

    Article  Google Scholar 

  33. Watts M (2017) Commentary: cities spearhead climate action. Nat Clim Chang 7:537–538. https://doi.org/10.1038/nclimate3358

    Article  Google Scholar 

  34. Araos M, Berrang L, Ford JD et al (2016) Climate change adaptation planning in large cities: a systematic global assessment. Environ Sci Policy 66:375–382. https://doi.org/10.1016/j.envsci.2016.06.009

  35. Magnan AK, Schipper ELF, Burkett M et al (2016) Addressing the risk of maladaptation to climate change. Wiley Interdiscip Rev Clim Chang 7:646–665. https://doi.org/10.1002/wcc.409

    Article  Google Scholar 

  36. Pozzer A, Zimmermann P, Doering UM et al (2012) Effects of business-as-usual anthropogenic emissions on air quality. Atmos Chem Phys 12:6915–6937. https://doi.org/10.5194/acp-12-6915-2012

    Article  Google Scholar 

  37. Vujcic M, Tomicevic-Dubljevic J, Zivojinovic I, Toskovic O (2019) Connection between urban green areas and visitors’ physical and mental well-being. Urban For Urban Green 40:299–307. https://doi.org/10.1016/j.ufug.2018.01.028

    Article  Google Scholar 

  38. Russo A, Cirella GT (2020) Urban sustainability: integrating ecology in city design and planning. In: Cirella GT (ed) Sustainable human-nature relations: environmental scholarship, economic evaluation, urban strategies. Springer, Singapore, pp 187–204

    Chapter  Google Scholar 

  39. UN-Habitat (2009) Sustainable urban energy planning: a handbook for cities and towns in developing countries. UN-Habitat and UNEP, Geneva

    Google Scholar 

  40. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    Article  Google Scholar 

  41. ARUP (2014) Cities alive: rethinking green infrastructure. Work Pap 161

    Google Scholar 

  42. Carter JG, Cavan G, Connelly A et al (2015) Climate change and the city: building capacity for urban adaptation. Prog Plann 95:1–66. https://doi.org/10.1016/j.progress.2013.08.001

    Article  Google Scholar 

  43. Perrotti D, Stremke S (2020) Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research. Environ Plan B Urban Anal City Sci 47:678–694. https://doi.org/10.1177/2399808318797131

    Article  Google Scholar 

  44. European Commission (2014) Green Infrastructure in the energy sector

    Google Scholar 

  45. Susca T (2019) Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Build Environ 162:106273. https://doi.org/10.1016/j.buildenv.2019.106273

  46. Tsoka S, Leduc T, Rodler A (2021) Assessing the effects of urban street trees on building cooling energy needs: the role of foliage density and planting pattern. Sustain Cities Soc 65:102633. https://doi.org/10.1016/j.scs.2020.102633

  47. Ko Y (2018) Trees and vegetation for residential energy conservation: a critical review for evidence-based urban greening in North America. Urban For Urban Green 34:318–335. https://doi.org/10.1016/j.ufug.2018.07.021

    Article  Google Scholar 

  48. Nowak DJ, Appleton N, Ellis A, Greenfield E (2017) Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States. Urban For Urban Green 21:158–165. https://doi.org/10.1016/j.ufug.2016.12.004

    Article  Google Scholar 

  49. Spatari S, Yu Z, Montalto FA (2011) Life cycle implications of urban green infrastructure. Environ Pollut 159:2174–2179. https://doi.org/10.1016/j.envpol.2011.01.015

    Article  Google Scholar 

  50. Hsu K-W, Chao J-C (2020) Economic valuation of green infrastructure investments in urban renewal: the case of the Station District in Taichung Taiwan. Environments 7:56. https://doi.org/10.3390/environments7080056

    Article  Google Scholar 

  51. BSHF (2014) Eco-city Augustenborg. Winner, World Habitat Award. Work Pap, Sweden, pp 1–43

    Google Scholar 

  52. Russo A, Escobedo FJ, Cirella GT, Zerbe S (2017) Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agric Ecosyst Environ 242:53–66. https://doi.org/10.1016/j.agee.2017.03.026

    Article  Google Scholar 

  53. Sardeshpande M, Rupprecht C, Russo A (2021) Edible urban commons for resilient neighbourhoods in light of the pandemic. Cities 109:103031. https://doi.org/10.1016/j.cities.2020.103031

  54. Nicholls E, Ely A, Birkin L et al (2020) The contribution of small-scale food production in urban areas to the sustainable development goals: a review and case study. Sustain Sci 15:1585–1599. https://doi.org/10.1007/s11625-020-00792-z

    Article  Google Scholar 

  55. Russo A, Cirella GT (2020) Edible green infrastructure for urban regeneration and food security: case studies from the Campania region. Agriculture 10:358. https://doi.org/10.3390/agriculture10080358

    Article  Google Scholar 

  56. Nowak DJ, Greenfield EJ, Ash RM (2019) Annual biomass loss and potential value of urban tree waste in the United States. Urban For Urban Green 46:126469. https://doi.org/10.1016/j.ufug.2019.126469

  57. Russo A, Escobedo FJ, Timilsina N et al (2014) Assessing urban tree carbon storage and sequestration in Bolzano, Italy. Int J Biodivers Sci Ecosyst Serv Manag 10:54–70. https://doi.org/10.1080/21513732.2013.873822

    Article  Google Scholar 

  58. Sagani A, Hagidimitriou M, Dedoussis V (2019) Perennial tree pruning biomass waste exploitation for electricity generation: the perspective of Greece. Sustain Energy Technol Assessments 31:77–85. https://doi.org/10.1016/j.seta.2018.11.001

    Article  Google Scholar 

  59. Winzer F, Kraska T, Elsenberger C et al (2017) Biomass from fruit trees for combined energy and food production. Biomass Bioenerg 107:279–286. https://doi.org/10.1016/j.biombioe.2017.10.027

    Article  Google Scholar 

  60. Clinton N, Stuhlmacher M, Miles A et al (2018) A global geospatial ecosystem services estimate of urban agriculture. Earth’s Futur 6:40–60. https://doi.org/10.1002/2017EF000536

    Article  Google Scholar 

  61. ASLA (2021) Sustainable urban development. American Society of Landscape Architects. https://www.asla.org/sustainableurbandevelopment.aspx

  62. Chew KW, Khoo KS, Foo HT et al (2021) Algae utilization and its role in the development of green cities. Chemosphere 268:129322. https://doi.org/10.1016/j.chemosphere.2020.129322

  63. Hendry DF, Juselius K, Hendry D, Juselius K (2000) Explaining cointegration analysis: part 1. Energy J 21:1–42

    Article  Google Scholar 

  64. Sanchez-Loor DA, Zambrano-Monserrate MA (2015) International journal of energy economics and policy causality analysis between electricity consumption, real gross domestic product, foreign direct investment, human development and remittances in Colombia, Ecuador and Mexico. Int J Energy Econ Policy 5:746–753

    Google Scholar 

  65. UNDP (2018) Statistical update 2018, human development reports. United Nations Development Program. http://hdr.undp.org/en/content/human-development-indices-indicators-2018-statistical-update. Accessed 23 July 2020

  66. UNDP (2018) Industrialization with a human face. United Nations Development Programme, Addis Ababa, Ethiopia

    Google Scholar 

  67. UNDP (2019) Human development index. United Nations Development Programme. http://www.hdr.undp.org/en/2019-report. Accessed 17 July 2019

  68. Wu Q, Maslyuk S, Clulow V (2010) Energy consumption transition and human development. Monash University, Melbourne

    Google Scholar 

  69. Wang Z, Danish ZB, Wang B (2018) Renewable energy consumption, economic growth and human development index in Pakistan: evidence form simultaneous equation model. J Clean Prod 184:1081–1090. https://doi.org/10.1016/j.jclepro.2018.02.260

    Article  Google Scholar 

  70. Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3:1167990. https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  71. IEA (2008) Key world energy statistics 2020—analysis. In: IEA OECD. https://www.iea.org/reports/key-world-energy-statistics-2020. Accessed 15 Mar 2021

  72. World Energy Council (2013) World energy resources 2013 survey: summary. World Energy Council, London

    Google Scholar 

  73. Hoogwijk M, Faaij A, Eickhout B et al (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257. https://doi.org/10.1016/j.biombioe.2005.05.002

    Article  Google Scholar 

  74. Ajanovic A (2011) Biofuels versus food production: does biofuels production increase food prices? Energy 36:2070–2076. https://doi.org/10.1016/j.energy.2010.05.019

    Article  Google Scholar 

  75. Manwell JF, McGowan JG, Rogeres AL (2010) Wind energy explained: theory, design and application, 2nd edn. Wiley, West Sussex

    Google Scholar 

  76. Ritchie H, Roser M (2020) Renewable energy. In: Our world data. https://ourworldindata.org/renewable-energy. Accessed 17 Mar 2021

  77. IRENA (2017) Renewable energy prospects for the Russian Federation. IRENA, Abu Dhabi

    Google Scholar 

  78. IRENA (2019) Innovation landscape for a renewable-powered future. IRENA, Abu Dhabi

    Google Scholar 

  79. World Energy Council (2001) Living in one world. In: Chapter 5. Concerns about sustainable history sustain. http://www.worldenergy.org/wec-geis/publications/reports/liow/the_concerns/sustainability.asp. Accessed 13 Dec 2017

  80. UNEP (2007) Global environment outlook 4. United Nations Environment Programme, Nairobi

    Google Scholar 

  81. Abbasi T, Premalatha M, Abbasi SA (2011) The return to renewables: will it help in global warming control? Renew Sustain Energy Rev 15:891–894. https://doi.org/10.1016/j.rser.2010.09.048

    Article  Google Scholar 

  82. Allen C, Metternicht G, Wiedmann T (2016) National pathways to the sustainable development goals (SDGs): a comparative review of scenario modelling tools. Environ Sci Policy 66:199–207. https://doi.org/10.1016/j.envsci.2016.09.008

    Article  Google Scholar 

  83. Nilsson M, Griggs D, Visbeck M (2016) Policy: map the interactions between sustainable development goals. Nature 534:320–322. https://doi.org/10.1038/534320a

    Article  Google Scholar 

  84. European Commission (2020) Renewable energy. In: Energy. https://ec.europa.eu/energy/topics/renewable-energy_en. Accessed 15 Mar 2021

  85. MNRE (2015) Tentative state-wise break-up of renewable power target to be achieved by the year 2022. Ministry of New Renewable Energy, Government of India. https://policy.asiapacificenergy.org/node/3652. Accessed 15 Mar 2021

  86. Kota S, Bayne SB, Nimmagadda S (2015) Offshore wind energy: a comparative analysis of UK, USA and India. Renew Sustain Energy Rev 41:685–694. https://doi.org/10.1016/j.rser.2014.08.080

    Article  Google Scholar 

  87. EIA (2018) Renewable energy explained. U.S. Energy Information Administration. https://www.eia.gov/energyexplained/renewable-sources/. Accessed 15 Mar 2021

  88. NDRC (2016) China’s national climate change program. National assessment report on climate change. http://www.china.org.cn/english/environment/213624.htm

  89. Power Technology (2018) Is Russia finally ready to embrace renewable energy? In: Power technology. https://www.power-technology.com/features/russia-renewable-energy/. Accessed 15 Mar 2021

  90. IPCC (2013) AR5 climate change 2013: the physical science basis—IPCC. Working Group I of the Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  91. IPCC (2017) AR6 climate change 2021: the physical science basis—IPCC. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  92. Sovacool BK (2016) How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res Soc Sci 13:202–215. https://doi.org/10.1016/j.erss.2015.12.020

    Article  Google Scholar 

  93. Grayson M (2017) Energy transitions. Nature 551:S133. https://doi.org/10.1038/d41586-017-07507-y

    Article  Google Scholar 

  94. Mey F, Diesendorf M (2018) Who owns an energy transition? Strategic action fields and community wind energy in Denmark. Energy Res Soc Sci 35:108–117. https://doi.org/10.1016/j.erss.2017.10.044

    Article  Google Scholar 

  95. Turner BL, Clark WC, Kates RW et al (1990) The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years edited by. Cambridge University Press, New York

    Google Scholar 

  96. Grigg DB (1987) The industrial revolution and land transformation. In: Wolman MG, Fournier FGA (eds) Land transformation in agriculture. Wiley, Chichester

    Google Scholar 

  97. Lewis MW, McNeill JR (2000) Something new under the Sun: an environmental history of the twentieth-century world. Geogr Rev 90:149. https://doi.org/10.2307/216186

    Article  Google Scholar 

  98. Richards JF (1990) Land transformation. In: Turner BL, Clark WC, Kates RW et al (eds) The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge University Press, New York

    Google Scholar 

  99. Kaereem MA (2021) Strategic planning for agricultural development. National Institute of Agricultural Extention Management

    Google Scholar 

  100. Griskevicius V, Cantú SM, Van Vugt M (2012) The evolutionary bases for sustainable behavior: Implications for marketing, policy, and social entrepreneurship. J Public Policy Mark 31:115–128

    Article  Google Scholar 

  101. Testa F, Russo MV, Cornwell TB et al (2018) Social sustainability as buying local: effects of soft policy, meso-level actors, and social influences on purchase intentions. J Public Policy Mark 37:152–166. https://doi.org/10.1509/jppm.16.215

    Article  Google Scholar 

  102. Bennett AJ, Bending GD, Chandler D et al (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71. https://doi.org/10.1111/j.1469-185X.2011.00184.x

    Article  Google Scholar 

  103. Capper JL, Cady RA, Bauman DE (2009) The environmental impact of dairy production: 1944 compared with 2007. J Anim Sci 87:2160–2167. https://doi.org/10.2527/jas.2009-1781

    Article  Google Scholar 

  104. Carlson KM, Gerber JS, Mueller ND et al (2017) Greenhouse gas emissions intensity of global croplands. Nat Clim Chang 7:63–68. https://doi.org/10.1038/nclimate3158

    Article  Google Scholar 

  105. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447. https://doi.org/10.1890/070062

    Article  Google Scholar 

  106. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:GB1003. https://doi.org/10.1029/2007GB002952

  107. FAO (2015) The state of food insecurity 2015. The Food and Agricultural Organisation of United Nations. http://www.fao.org/publications/sofi/2015/en/. Accessed 15 Mar 2021

  108. World Bank (2019) World Bank open data. In: World Bank. https://data.worldbank.org/. Accessed 27 July 2019

  109. Lowder SK, Skoet J, Raney T (2016) The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:16–29. https://doi.org/10.1016/j.worlddev.2015.10.041

    Article  Google Scholar 

  110. Herrero M, Thornton PK, Power B et al (2017) Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet Heal 1:e33–e42. https://doi.org/10.1016/S2542-5196(17)30007-4

    Article  Google Scholar 

  111. Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32:243–255. https://doi.org/10.1007/BF03391600

    Article  Google Scholar 

  112. FAO, IFAD, UNICEF et al (2018) The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Rome

    Google Scholar 

  113. West PC, Gerber JS, Engstrom PM et al (2014) Leverage points for improving global food security and the environment. Science (80-) 345:325–328. https://doi.org/10.1126/science.1246067

  114. Beal T, Massiot E, Arsenault JE et al (2017) Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS One 12:e0175554. https://doi.org/10.1371/journal.pone.0175554

  115. Davis DR, Epp MD, Riordan HD, Davis DR (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr 23:669–682. https://doi.org/10.1080/07315724.2004.10719409

    Article  Google Scholar 

  116. Siegel KR, Ali MK, Srinivasiah A et al (2014) Do we produce enough fruits and vegetables to meet global health need? PLoS One 9:e104059. https://doi.org/10.1371/journal.pone.0104059

  117. Fleming A, Vanclay F (2010) Farmer responses to climate change and sustainable agriculture. A review. Agron Sustain Dev 30:11–19. https://doi.org/10.1051/agro/2009028

    Article  Google Scholar 

  118. Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137. https://doi.org/10.1007/s10668-005-1262-8

    Article  Google Scholar 

  119. Figueres C, Schellnhuber HJ, Whiteman G et al (2017) Three years to safeguard our climate. Nature 546:593–595. https://doi.org/10.1038/546593a

    Article  Google Scholar 

  120. Lal R (2009) Soils and world food security. Soil Tillage Res 102:1–4. https://doi.org/10.1016/j.still.2008.08.001

    Article  Google Scholar 

  121. Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358. https://doi.org/10.1146/annurev.energy.28.040202.122858

    Article  Google Scholar 

  122. Pereira HM, Navarro LM, Martins IS (2012) Global biodiversity change: the bad, the good, and the unknown. Annu Rev Environ Resour 37:25–50. https://doi.org/10.1146/annurev-environ-042911-093511

    Article  Google Scholar 

  123. Jarvis DI, Brown AHD, Pham HC et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci USA 105:5326–5331. https://doi.org/10.1073/pnas.0800607105

    Article  Google Scholar 

  124. Akram QF (2009) Commodity prices, interest rates and the dollar. Energy Econ 31:838–851. https://doi.org/10.1016/j.eneco.2009.05.016

    Article  Google Scholar 

  125. Mitchel D (2008) A note on rising food prices. World Bank, Washington, DC

    Book  Google Scholar 

  126. Hunter MC, Smith RG, Schipanski ME et al (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:386–391. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  127. Cohen B, Muñoz P (2016) Sharing cities and sustainable consumption and production: towards an integrated framework. J Clean Prod 134:87–97. https://doi.org/10.1016/j.jclepro.2015.07.133

    Article  Google Scholar 

  128. Gemeda BS, Abebe BG, Paczoski A et al (2019) What motivates speculators to speculate? Entropy 22:59. https://doi.org/10.3390/e22010059

    Article  Google Scholar 

  129. de Schutter O (2011) How not to think of land-grabbing: three critiques of large-scale investments in farmland. J Peasant Stud 38:249–279. https://doi.org/10.1080/03066150.2011.559008

    Article  Google Scholar 

  130. Gemeda BS, Abebe BG, Cirella GT (2020) How efficient is urban land speculation? In: Cirella GT (ed) Advances in 21st century human settlements. Springer, Singapore, pp 101–121

    Google Scholar 

  131. MEA (2005) Ecosystems and human well-being: wetlands and water synthesis. Millennium Ecosystem Assessment, Washington, DC

    Google Scholar 

  132. Pimentel D, Harvey C, Resosudarmo P et al (1995) Environmental and economic costs of soil erosion and conservation benefits. Science (80-)267:1117–1123. https://doi.org/10.1126/science.267.5201.1117

  133. Garnett T, Godfray CJ (2012) Sustainable intensification in agriculture. Navigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin, Oxford

    Google Scholar 

  134. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. https://doi.org/10.1038/nature11069

    Article  Google Scholar 

  135. De Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9. https://doi.org/10.1016/j.agsy.2011.12.004

    Article  Google Scholar 

  136. United Nations (2017) World population prospects: the 2017 revision. United Nations Department of Economics and Social Affairs. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html. Accessed 15 Mar 2021

  137. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522. https://doi.org/10.1038/nature13959

    Article  Google Scholar 

  138. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  Google Scholar 

  139. Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81–90. https://doi.org/10.1016/j.jrurstud.2011.09.001

    Article  Google Scholar 

  140. Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8:034015. https://doi.org/10.1088/1748-9326/8/3/034015

  141. Erb KH, Lauk C, Kastner T et al (2016) Exploring the biophysical option space for feeding the world without deforestation. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms11382

    Article  Google Scholar 

  142. Doré T, Clermont-Dauphin C, Crozat Y et al (2008) Methodological progress in on-farm regional agronomic diagnosis. A review. Agron Sustain Dev 28:151–161. https://doi.org/10.1051/agro:2007031

    Article  Google Scholar 

  143. Xiong W, Holman I, Conway D et al (2008) A crop model cross calibration for use in regional climate impacts studies. Ecol Modell 213:365–380. https://doi.org/10.1016/j.ecolmodel.2008.01.005

    Article  Google Scholar 

  144. Amanullah M, Kailasam C, Safiullah A et al (2009) Crop simulation growth model in Cassava. Res J Agri Biol Sci 31:838–851

    Google Scholar 

  145. Csomós G (2017) Cities as command and control centres of the world economy: an empirical analysis, 2006–2015. Bull Geogr 38:7–26. https://doi.org/10.1515/bog-2017-0031

    Article  Google Scholar 

  146. Herrschel T, Newman P (2017) Cities as international actors: urban and regional governance beyond the nation state. Palgrave Macmillan, London

    Book  Google Scholar 

  147. Malasenkova AA, Lavrov IR (2020) Global cities: Sydney. J Gov Polit 1:1–11

    Google Scholar 

  148. Parnell S, Robinson J (2012) (Re)theorizing cities from the global south: looking beyond neoliberalism. Urban Geogr 33:593–617. https://doi.org/10.2747/0272-3638.33.4.593

    Article  Google Scholar 

  149. Toly NJ (2008) Transnational municipal networks in climate politics: from global governance to global politics. Globalizations 5:341–356. https://doi.org/10.1080/14747730802252479

    Article  Google Scholar 

  150. Kosovac A, Acuto M, Jones TL (2020) Acknowledging urbanization: a survey of the role of cities in UN frameworks. Glob Policy 11:293–304. https://doi.org/10.1111/1758-5899.12783

    Article  Google Scholar 

  151. De Guimarães JCF, Severo EA, Felix Júnior LA et al (2020) Governance and quality of life in smart cities: towards sustainable development goals. J Clean Prod 253:119926. https://doi.org/10.1016/j.jclepro.2019.119926

  152. Jedwab R, Loungani P, Yezer A (2021) Comparing cities in developed and developing countries: population, land area, building height and crowding. Reg Sci Urban Econ 86:103609. https://doi.org/10.1016/j.regsciurbeco.2020.103609

  153. Jedwab R, Loungani MP, Yezer A (2019) How should we measure city size theory and evidence within and across rich and poor countries. IMF, Geneva

    Book  Google Scholar 

  154. Dumont G-F (2018) Urban demographic transition. Urban Dev Issues 56:13–25. https://doi.org/10.2478/udi-2018-0009

    Article  Google Scholar 

  155. Rigolon A, Browning M, Lee K, Shin S (2018) Access to urban green space in cities of the global south: a systematic literature review. Urban Sci 2:67. https://doi.org/10.3390/urbansci2030067

    Article  Google Scholar 

  156. Brandt W (1980) North-south: a programme for survival: report of the independent commission on international development issues. Independent Commission on International Development Issues, London

    Google Scholar 

  157. Ganguly D, Mobley C (2021) Global south humanities lab. Academy of Global Humanities and Critical Theory. https://aghct.org/research-and-opportunities/611. Accessed 24 Mar 2021

  158. RGS (2021) A 60 second guide to … the global north/south divide. Global Learning Program. moz-extension://b25df011-8780-4be7-9be7-6714e4992816/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.rgs.org%2FCMSPages%2FGetFile.aspx%3Fnodeguid%3D9c1ce781-9117-4741-af0a-a6a8b75f32b4%26lang%3Den-GB. Accessed 23 Mar 2021

    Google Scholar 

  159. Cirella GT, Bąk M, Kozlak A et al (2019) Transport innovations for elderly people. Res Transp Bus Manag 30:100381. https://doi.org/10.1016/j.rtbm.2019.100381

  160. Plouffe L, Kalache A (2010) Towards global age-friendly cities: determining urban features that promote active aging. J Urban Heal 87:733–739. https://doi.org/10.1007/s11524-010-9466-0

    Article  Google Scholar 

  161. Vu K, Hartley K (2018) Promoting smart cities in developing countries: policy insights from Vietnam. Telecomm Policy 42:845–859. https://doi.org/10.1016/j.telpol.2017.10.005

    Article  Google Scholar 

  162. Duranton G (2008) Viewpoint: from cities to productivity and growth in developing countries. Can J Econ Can d’économique 41:689–736. https://doi.org/10.1111/j.1540-5982.2008.00482.x

    Article  Google Scholar 

  163. Ford JD, Berrang-Ford L, Biesbroek R et al (2015) Adaptation tracking for a post-2015 climate agreement. Nat Clim Chang 5:967–969. https://doi.org/10.1038/nclimate2744

  164. Anguelovski I, Shi L, Chu E et al (2016) Equity impacts of urban land use planning for climate adaptation. J Plan Educ Res 36:333–348. https://doi.org/10.1177/0739456X16645166

    Article  Google Scholar 

  165. Ford JD, Berrang-Ford L (2016) The 4Cs of adaptation tracking: consistency, comparability, comprehensiveness, coherency. Mitig Adapt Strateg Glob Chang 21:839–859. https://doi.org/10.1007/s11027-014-9627-7

  166. Olazabal M, Ruiz De Gopegui M, Tompkins EL et al (2019) A cross-scale worldwide analysis of coastal adaptation planning. Environ Res Lett 14:124056. https://doi.org/10.1088/1748-9326/ab5532

  167. Le TDN (2020) Climate change adaptation in coastal cities of developing countries: characterizing types of vulnerability and adaptation options. Mitig Adapt Strateg Glob Chang 25:739–761. https://doi.org/10.1007/s11027-019-09888-z

    Article  Google Scholar 

  168. Campbell T (2013) Beyond smart cities: how cities network, learn and innovate. Taylor and Francis, New York

    Book  Google Scholar 

  169. Keiner M, Kim A (2007) Transnational city networks for sustainability. Eur Plan Stud 15:1369–1395. https://doi.org/10.1080/09654310701550843

    Article  Google Scholar 

  170. Mocca E (2017) City networks for sustainability in Europe: an urban-level analysis. J Urban Aff 39:691–710. https://doi.org/10.1080/07352166.2017.1282769

    Article  Google Scholar 

  171. Tosun J, Leopold L (2019) Aligning climate governance with urban water management: insights from transnational city networks. Water 11:701. https://doi.org/10.3390/w11040701

    Article  Google Scholar 

  172. Haupt W, Chelleri L, van Herk S, Zevenbergen C (2020) City-to-city learning within climate city networks: definition, significance, and challenges from a global perspective. Int J Urban Sustain Dev 12:143–159. https://doi.org/10.1080/19463138.2019.1691007

    Article  Google Scholar 

  173. Bicknell J, Dodman D, Satterthwaite D (2009) Adapting cities to climate change: understanding and addressing the development challenges. Routledge, London

    Google Scholar 

  174. Guodaar L, Asante F, Eshun G et al (2020) How do climate change adaptation strategies result in unintended maladaptive outcomes? Perspectives of tomato farmers. Int J Veg Sci 26:15–31. https://doi.org/10.1080/19315260.2019.1573393

    Article  Google Scholar 

  175. Juhola S, Glaas E, Linnér BO, Neset TS (2016) Redefining maladaptation. Environ Sci Policy 55:135–140. https://doi.org/10.1016/j.envsci.2015.09.014

    Article  Google Scholar 

  176. Chung Y, Noh H, Honda Y et al (2017) Temporal changes in mortality related to extreme temperatures for 15 cities in northeast Asia: adaptation to heat and maladaptation to cold. Am J Epidemiol 185:907–913. https://doi.org/10.1093/aje/kww199

    Article  Google Scholar 

  177. Barnett J, O’Neill S (2010) Maladaptation. Glob Environ Chang 20:211–213. https://doi.org/10.1016/j.gloenvcha.2009.11.004

    Article  Google Scholar 

  178. Burksiene V, Dvorak J, Burbulytė-Tsiskarishvili G (2020) City diplomacy in young democracies: the case of the baltics. In: Amiri S, Sevin E (eds) City diplomacy. Springer International Publishing, Cham, pp 305–330

    Chapter  Google Scholar 

  179. Chan DK, Hong (2016) City diplomacy and “glocal” governance: Revitalizing cosmopolitan democracy. Innovation 29:134–160. https://doi.org/10.1080/13511610.2016.1157684

  180. Kuşku-Sönmez E (2014) Regional cooperation in the black sea basin: what role for city diplomacy? Southeast Eur Black Sea Stud 14:489–507. https://doi.org/10.1080/14683857.2014.967944

    Article  Google Scholar 

  181. Westphal MI, Martin S, Zhou L, Satterthwaite D (2017) Powering cities in the global south: how energy access for all benefits the economy and the environment. World Resource Institute. www.citiesforall.org. Accessed 15 Mar 2021

  182. Rana MMP (2009) Sustainable city in the global north and south: goal or principle? Manag Environ Qual An Int J 20:506–521. https://doi.org/10.1108/14777830910981195

    Article  Google Scholar 

  183. Rana MMP (2011) Urbanization and sustainability: challenges and strategies for sustainable urban development in Bangladesh. Environ Dev Sustain 13:237–256. https://doi.org/10.1007/s10668-010-9258-4

    Article  Google Scholar 

  184. Chu E, Anguelovski I, Roberts D (2017) Climate adaptation as strategic urbanism: assessing opportunities and uncertainties for equity and inclusive development in cities. Cities 60:378–387. https://doi.org/10.1016/j.cities.2016.10.016

    Article  Google Scholar 

  185. Chu E, Michael K (2019) Recognition in urban climate justice: marginality and exclusion of migrants in Indian cities. Environ Urban 31:139–156. https://doi.org/10.1177/0956247818814449

    Article  Google Scholar 

  186. Porter L, Rickards L, Verlie B et al (2020) Climate justice in a climate changed world. Plan Theory Pract 21:293–321. https://doi.org/10.1080/14649357.2020.1748959

    Article  Google Scholar 

  187. Jenkins K (2018) Setting energy justice apart from the crowd: lessons from environmental and climate justice. Energy Res Soc Sci 39:117–121. https://doi.org/10.1016/j.erss.2017.11.015

    Article  Google Scholar 

  188. French M, Ramirez-Lovering D, Sinharoy SS et al (2020) Informal settlements in a COVID-19 world: moving beyond upgrading and envisioning revitalisation. Cities Heal 1–4. https://doi.org/10.1080/23748834.2020.1812331

  189. Hakovirta M, Denuwara N (2020) How COVID-19 redefines the concept of sustainability. Sustainability 12:3727. https://doi.org/10.3390/su12093727

    Article  Google Scholar 

  190. Bhide A (2020) Informal settlements, the emerging response to COVID and the imperative of transforming the narrative. J Soc Econ Dev 1–10. https://doi.org/10.1007/s40847-020-00119-9

  191. Lau LS, Samari G, Moresky RT et al (2020) COVID-19 in humanitarian settings and lessons learned from past epidemics. Nat Med 26:647–648. https://doi.org/10.1038/s41591-020-0851-2

    Article  Google Scholar 

  192. von Seidlein L, Alabaster G, Deen J, Knudsen J (2021) Crowding has consequences: prevention and management of COVID-19 in informal urban settlements. Build Environ 188:107472. https://doi.org/10.1016/j.buildenv.2020.107472

  193. Gupte J, Mitlin D (2020) COVID-19: what is not being addressed. Environ Urban 095624782096396. https://doi.org/10.1177/0956247820963961

  194. Corburn J, Vlahov D, Mberu B et al (2020) Slum health: arresting COVID-19 and improving well-being in urban informal settlements. J Urban Heal 97:348–357. https://doi.org/10.1007/s11524-020-00438-6

    Article  Google Scholar 

  195. Gupta S, Nguyen TD, Rojas FL et al (2020) Tracking public and private responses to the COVID-19 epidemic: evidence from state and local government actions. NBER Working Paper

    Google Scholar 

  196. Gil D, Domínguez P, Undurraga EA, Valenzuela E (2021) The socioeconomic impact of COVID-19 in urban informal settlements. medRxiv 2021.01.16.21249935. https://doi.org/10.1101/2021.01.16.21249935

  197. Nyashanu M, Simbanegavi P, Gibson L (2020) Exploring the impact of COVID-19 pandemic lockdown on informal settlements in Tshwane Gauteng Province, South Africa. Glob Public Health 15:1443–1453. https://doi.org/10.1080/17441692.2020.1805787

    Article  Google Scholar 

  198. Zhang W, Wang K, Yin L et al (2020) Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China. Psychother Psychosom 89:242–250. https://doi.org/10.1159/000507639

    Article  Google Scholar 

  199. Winter SC, Obara LM, McMahon S (2020) Intimate partner violence: a key correlate of women’s physical and mental health in informal settlements in Nairobi, Kenya. PLoS One 15:e0230894. https://doi.org/10.1371/journal.pone.0230894

  200. Harris J, Cook T, Gibbs L, et al (2018) Searching for the impact of participation in health and health research: challenges and methods. Biomed Res Int 9427452. https://doi.org/10.1155/2018/9427452

  201. Jennings Mabery M, Gibbs-Scharf L, Bara D (2013) Communities of practice foster collaboration across public health. J Knowl Manag 17:226–236. https://doi.org/10.1108/13673271311315187

  202. Adekola PO, Iyalomhe FO, Paczoski A et al (2021) Public perception and awareness of waste management from Benin City. Sci Rep 11:306. https://doi.org/10.1038/s41598-020-79688-y

    Article  Google Scholar 

  203. Van Belle S, Affun-Adegbulu C, Soors W et al (2020) COVID-19 and informal settlements: an urgent call to rethink urban governance. Int J Equity Health 19:81. https://doi.org/10.1186/s12939-020-01198-0

    Article  Google Scholar 

  204. Buckley RM (2020) Targeting the world’s slums as fat tails in the distribution of COVID-19 cases. J Urban Heal 97:358–364. https://doi.org/10.1007/s11524-020-00450-w

    Article  Google Scholar 

  205. Leach M, Scoones I, Stirling A (2010) Governing epidemics in an age of complexity: narratives, politics and pathways to sustainability. Glob Environ Chang 20:369–377. https://doi.org/10.1016/j.gloenvcha.2009.11.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe T. Cirella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cirella, G.T., Mwangi, S., Streltsova, K., Abebe, S.T., Russo, A. (2022). Human Settlements: Urban Challenges and Future Development. In: Cirella, G.T. (eds) Human Settlements. Advances in 21st Century Human Settlements. Springer, Singapore. https://doi.org/10.1007/978-981-16-4031-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4031-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4030-8

  • Online ISBN: 978-981-16-4031-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics