Skip to main content

A Review on Indigenous Freshwater Microalgae Isolated from Natural Habitats of Arunachal Pradesh, India, as a Biodiesel Source

  • Conference paper
  • First Online:
  • 733 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

It has been globally accepted that first- and second-generation biofuels, primarily produced from terrestrial crops are not enough to meet global energy demand, and these issues compelled researchers to seek out additional biofuel sources. Recently, third-generation biofuels which are obtained from microalgae are gaining a lot of attention due to its ability to grow on non-arable land and produce high oil yield per area; however, despite having several advantages, biofuel production from microalgae does not come cheap. Therefore, understanding the behaviour of native microalgae species for utilizing it as a biofuel source is one of the most eminent approaches as they are naturally resistant to sudden climatic changes and have the ability to survive harsh conditions, and these all are important factors when microalgae are cultivated in an open system for commercialization. In this paper, the feasibility and scope of growing freshwater microalgae in Arunachal Pradesh are reviewed and also describe the current status of microalgae species which are naturally present on local water bodies of north-eastern region of India for biodiesel production, including their biomass yield, biomass productivity, lipid content and their performance in engine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chandrasekhar, K., Lee, Y.-J., & Lee, D.-W. (2015). Biohydrogen production: Strategies to improve process efficiency through microbial routes. International Journal Molecular Science, 16, 8266–8293.

    Google Scholar 

  2. European Environmental Agency (EEA) .(2004). Greenhouse gas emission trends and projections in Europe 2004: Progress by the EU and its Member States towards achieving their Kyoto Protocol targets. Report N85.

    Google Scholar 

  3. International Energy Agency (IEA). World Energy Outlook (2007). China and India Insights, Paris, France.

    Google Scholar 

  4. Ormerod, W. G., Freund, P., Smith, A., & Davison, J. (2002). Ocean storage of CO2. IEA greenhouse gas R&D programme. International Energy Agency

    Google Scholar 

  5. Ministry of Petroleum and Natural Gas, Government of India. (2020). http://petroleum.nic.in.

  6. Basavaraj, G., Rao, P., Reddy, C., Ashok, A., Pinnamaneni, S. R., & Reddy, B. V. S. (2012). A review of national biofuel policy in India: A critique need for promotion of alternative feedstock. Journal Biofuels, 3(2), 65–78.

    Google Scholar 

  7. Kasturi, D., Achlesh, D., & GawLin, J. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 69, 114–122.

    Article  Google Scholar 

  8. Ravindranath, N. H., Lakshmi, C. S., Manuvie, R., & Balachandra, P. (2011). Biofuel production and implications for land use, food production and environment in India. Energy Policy, 39(10), 5737–5745.

    Article  Google Scholar 

  9. Ministry of Petroleum and Natural Gas. (2018). National Policy of Biofuel, New Delhi.

    Google Scholar 

  10. Reinhardt, G., Rettenmaier, N., Ko¨ppen, S. (2008). How sustainable are biofuels for transportation? In Bioenergy: Challenges and opportunities. International Conference and Exhibition on Bioenergy. ISBN 978–92–5–107414–5.

    Google Scholar 

  11. Lundquist, T. L., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. EBI, 2010, 1–178.

    Google Scholar 

  12. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.

    Article  Google Scholar 

  13. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011). Assessment of treatment capabilities of Varthur Lake, Bangalore India. International Journal Environment, 14, 84–102.

    Google Scholar 

  14. Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92, 405–416.

    Article  Google Scholar 

  15. Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable Sustainable Energy Review, 4(2), 111–133.

    Article  Google Scholar 

  16. Papu, N. H., Lingfa, P., Dash, S. K. (2020). Euglena Sanguinea algal biodiesel and its various diesel blends as diesel engine fuels: A study on the performance and emission characteristics. Energy Sources, Part. https://doi.org/10.1080/15567036.2020.1798566

  17. Costa, C., & Hadiyanto, A. (2018). Bioelectricity production from microalgae-microbial fuel cell technology (MMFC). MATEC Web Conference, 156, 2–4.

    Article  Google Scholar 

  18. Ashokkumar, V., Chen, W.-H., Kamyab, H., Kumar, G., Al-Muhtaseb, A. H., & Ngamcharussrivichai, C. (2019). Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe)– Integrated algal biorefinery. Energy, 189, 116–128.

    Article  Google Scholar 

  19. Rasouli, Z., Valverde-Pérez, B., D’Este, M., De Francisci, D., & Angelidaki, I. (2018). Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochemical Energy Journal, 134, 129–133.

    Article  Google Scholar 

  20. Zainan, N. H., Srivatsa, S. C., Li, F., & Bhattacharya, S. (2018). Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel, 223, 12–19.

    Article  Google Scholar 

  21. Karthikeyan, S., & Prabhakaran, T. D. (2018). Emission analysis of Botryococcus braunii algal biofuel using Ni-Doped ZnO nano additives for IC engines. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 40, 1060–1067.

    Article  Google Scholar 

  22. Beer, L. L., Boyd, E. S., Peters, J. W., Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion Biotechnology, 20(3), 264–271.

    Google Scholar 

  23. Chanakya, H. N., Karthick, B., Ramachandra, T. V. (2006) .Nitrogen and carbon flows through Bellandur lake-role of Bellandur lake as a natural wetland treating Bangalore wastewater. http://wgbis.ces.iisc.ernet.in/energy/lake2006

  24. Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applications Microbiology Biotechnology, 287–293.

    Google Scholar 

  25. Venkatamaran, L. V. (1986). Blue-green algae as biofertilizer. In A. Richmond (Ed.), CRC Handbook of microalgal mass culture (pp. 455–471). Boca Raton: CRC Press.

    Google Scholar 

  26. Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Sciences, 10(2), 518–532.

    Article  Google Scholar 

  27. Ramachandra, T. V., Durga, M. M., & Karthic, B. K. (2009). Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Industrial and Engineering Chemistry Research, 48(19), 8769–8788.

    Article  Google Scholar 

  28. Sivasubramanian, V., Subramanian, V. V., Raju, P. A., Muthukumaran, M. (2009). In Phycoremediation of Oil Drilling Waste at Kakinada International Conference on Algal Biomass,Resources and Utilization, Stella Maris College, Chennai.

    Google Scholar 

  29. Rajvanshi, S., & Sharma, M. P. (2012). Micro Algae: A potential source of biodiesel. Journal of Sustainable Bioenergy Systems, 02(03).

    Google Scholar 

  30. Government of India .(2011). Wasteland atlas of India, Arunachal Pradesh. https://dolr.gov.in/documents/wasteland-atlas-of india.

    Google Scholar 

  31. Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas . Weather, 59(6), 155–157.

    Article  Google Scholar 

  32. Debnath, A., & Mitra, A. (2013, December 4–8). Challenges of solid waste accumulation and management in a growing urban area: A study of Itanagar town of Arunachal Pradesh. Indian Society for Ecological Economics-Global Change, Ecosystems, Sustainability.

    Google Scholar 

  33. Das, S. K., & Adhikar, S. P. (2012). Diversity of freshwater algae in Arunachal Pradesh and their distribution in different altitudes. Journal Indian Bot Society, 91(1–3), 160–182.

    Google Scholar 

  34. Munir, N., Imtiaz, A., Sharif, N., & Naz, S. (2015). Optimization of growth conditions of different algal strains and determination of their lipid contents. Journal Animals Plant Science, 25(2), 546–553. ISSN: 1018–7081

    Google Scholar 

  35. Haik, Y., Selim, Md. Y. E., & Abdulrehman, T. (2010). Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy, 36, 1827–1835.

    Article  Google Scholar 

  36. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresourcing Technology, 101(1), S75–S77.

    Google Scholar 

  37. Sydney, E. B., da Silva, T. E., Tokarski, A., Novak, A. C., de Carvalho, J. C., & Wojciechowski, A. L. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 18(10), 3291–3294.

    Article  Google Scholar 

  38. Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable Sustainable Energy Review, 15, 584–593.

    Google Scholar 

  39. Abomohra, A.E.-F., Wagner, M., El-Sheek, M., & Hanelt, D. (2012). Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: Screening studies towards biodiesel production. Journal of Applied Phycology, 25(4), 931–936.

    Article  Google Scholar 

  40. Han, L., Pei, H., Hu, W., Han, F., Song, M., & Zhang, S. (2014). Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresourcing Technology, 165(C), 38–41.

    Google Scholar 

  41. Ashokkumar, V., Salam, Z., Tiwari, O. N., Chinnasamy, S., Mohammede, S., & Ani, F. N. (2015). An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conversation Management, 101, 778–786.

    Article  Google Scholar 

  42. Halfhide T, Åkerstrøm, A., Lekang, O. I., Gislerød, H. R., & Ergas, S. J. (2014). Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Research, 6(B), 152–159.

    Google Scholar 

  43. Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable Sustainable Energy Review, 15, 584–593.

    Article  Google Scholar 

  44. Han, L., Pei, H., Hu, W., Jiang, L., Ma, G., Zhang, S., & Han, F. (2015). Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresource Technology, 175, 262–268.

    Article  Google Scholar 

  45. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., & Bonini, G. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photo bioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  Google Scholar 

  46. Kings, A. J., Raj, R. E., Miriam, L. R. M., & Visvanathan, M. A. (2017). Growth studies on microalgae Euglena sanguinea in various natural eco-friendly composite media to optimize the lipid productivity. Bioresource Technology, 244, 1349–1357.

    Article  Google Scholar 

  47. Saputro, T. B., Purwani, K. I., Ermavitalini, D., & Saifullah, A. F. (2019). Isolation of high lipid content microalgae from wonorejo river, Surabaya, Indonesia and its identification using rbcL marker gene. Biodiversitas, 20(5), 1380–1388.

    Article  Google Scholar 

  48. Chaffin, J. D., Mishra, S., Kuhaneck, R. M., Heckathorn, S. A., & Bridgeman, T. B. (2012). Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: A candidate for biofuel production. Journal of Applied Phycology, 24, 1045–1051.

    Article  Google Scholar 

  49. Tilman, D., Mattson, M., & Langer, S. (1981). Competition and nutrient kinetics along a temperature gradient: An experimental test of a mechanistic approach to niche theory. Limnology and Oceanography, 26(6), 1020–1033.

    Article  Google Scholar 

  50. Graham, J. M., Graham, L. E., Zulkifly, S. B., Pfleger, B. F., Hoover, S. W., & Yoshitani, J. (2011). Freshwater diatoms as a source of lipids for biofuels. J. Ind., 39, 419–428.

    Google Scholar 

  51. Vinayak, V., Gordon, R., Gautam, S., Rai, A. (2014). Discovery of a diatom that oozes oil. Advanced Science Letters, 20(7–9), Special Issue: National Conference on Nanotechnology and Renewable Energy, New Delhi: Jamia Millia Islamia.

    Google Scholar 

  52. Papu, N. H., & Lingfa, P. (2018). Isolation biomass estimation and characterization of the biofuel potential of diatom Navicula Sphaerophora. AIP Conference Proceedings, 10(1063/1), 5032022.

    Google Scholar 

  53. Lawton, R. J., de Nys, R., & Paul, N. A. (2013). Selecting reliable and robust freshwater Macroalgae for biomass applications. PLoS ONE, 8(5), e64168.

    Google Scholar 

  54. Lawton, R. J., de Nys, R., Skinner, S., & Paul, N. A. (2014). Isolation and identification of Oedogonium species and strains for biomass applications. PLoS ONE, 9(3), e90223.

    Google Scholar 

  55. Metzger, P., & Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applications Microbiology Biotechnology, 66(25), 486–496.

    Article  Google Scholar 

  56. Kalacheva, G. S., Zhila, N. O., & Volova, T. G. (2002). Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36(2), 317–331.

    Article  Google Scholar 

  57. Hoek, C., Mann, D. G., Martin, J. H. (1995). Algae: An introduction to phycology. Cambridge University Press. ISBN 0-521-31687-1.

    Google Scholar 

  58. Farouk, K. El-B., Gad, M. S., Abdoc, S. M., Abed, K. A., Matte, I. A. (2016). Performance and exhaust emissions of a diesel engine burning algal biodiesel blends. International Journal Mechanics Mechatronics, 16(3), 151–158. 165803–9797-IJMME-IJENS

    Google Scholar 

  59. Islam, Md. A., Rahman, M. M., Heimann, K., Nabi, Md. N., Ristovski, Z. D., Dowell, A., Thomas, G., Feng, B., Alvensleben, N., & Brown, R. J. (2014). Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel, 143, 351–360.

    Article  Google Scholar 

  60. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable Sustainable Energy Review, 16(1), 143–169.

    Article  Google Scholar 

  61. Dash, S. K., & Lingfa, P. (2018). Performance evaluation of Nahar oil–diesel blends in a single cylinder direct injection diesel engine. International Journal of Green Energy, 15(6), 400–405.

    Google Scholar 

  62. Sharif Hossain, A. B. M., Salleh, A., Boyce, A. N., Chowdhury, P., & Naqiuddin, M. (2008). Bodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology, 4(3), 250–254.

    Article  Google Scholar 

  63. Ashokkumar, V., & Rengasamy, R. (2012). Mass culture of B braunii Kutz. Under open raceway pond for biofuel production. Bioresource Technology, 104, 394–399.

    Article  Google Scholar 

  64. Jahirul, M. I., Brown, R. J., Senadeera, W., O’Hara, I. M., Ristovski, Z. D. (2013). The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies, 6(8), 3764–3806.

    Google Scholar 

  65. Patel, J. S., Kumar, N., Deep, A., Sharma, A., Gupta, D. (2014). Evaluation of emission characteristics of blend of algae oil methyl ester with diesel in a medium capacity diesel engine. SAE Technical Paper 2014–01–1378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papu, N.H., Lingfa, P. (2022). A Review on Indigenous Freshwater Microalgae Isolated from Natural Habitats of Arunachal Pradesh, India, as a Biodiesel Source. In: Mahanta, P., Kalita, P., Paul, A., Banerjee, A. (eds) Advances in Thermofluids and Renewable Energy . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3497-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3497-0_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3496-3

  • Online ISBN: 978-981-16-3497-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics