Skip to main content

Energy and Climate Footprint Towards the Environmental Sustainability

  • Chapter
  • First Online:
Book cover Agroecological Footprints Management for Sustainable Food System

Abstract

Agriculture has a share of 5% energy use globally. Most of the source is not from the renewable sources leading huge amount of GHG (greenhouse gases) emission. As per the Paris agreement on the use of climate change the major emphasis should be given for reducing GHG emission. Therefore, the process of agriculture needs a modification. It was observed that the various forms of ecological footprint are very important for environmental sustainability of agroecosystem. Energy footprint estimation is a key issue in the era of energy crisis. Improved technology and processes has improved the lifestyle of common man and as a consequence of that the energy consumption has given at tremendous rise. The non-renewable energy sources are declining at a fast rate and therefore, emphasizing switching over to renewable alternatives. Moreover, the energy demand and footprint is increasing day by day. In the agroecosystem with improved agrotechnology and mechanization of the agriculture practices the energy requirement is gradually increasing day by day. It is leading to release of huge amount of GHG emission from the agroecosystem leading to increase in energy subsidy in agriculture sector. Energy footprint estimation in cropping system is therefore most needed aspect at the present time. Further emission of huge amount of GHG from the agroecosystem is creating the problem of climate change and global warming. Therefore, the climate footprint of the earth ecosystem is also reflecting changing pattern. It is also hampering the agricultural productivity and production. Proper management of agriculture through organic farming, crop rotation and other indigenous technologies under changing climate has become the biggest challenge on the earth surface. The concept of energy footprint is associated with the level of GHG emission that is taking place from various sectors of agroecosystem. Addressing environmental sustainability in the field of agriculture requires sustainable and integrated management of resources along with emission reduction of GHGs. This would help to reduce the energy footprint of the agroecosystem and subsequently help in combating climate change. The pattern of climate footprint needs to be conserved in order to avoid the hazards of the changing climate that is challenging the issue of environmental sustainability. Therefore, analysing climate and energy footprint is a key issue from agroecosystem point of view in order to attain environmental sustainability of the agriculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFOLU:

Agriculture Forestry and Other Land Use

C:

Carbon

CF:

Carbon Footprint

CFP:

Carbon Footprint Potential

CH4 :

Methane

CO2:

Carbon Dioxide

EU:

European Union

GGE:

Global Greenhouse Emission

GHG:

Greenhouse Gases

IPCC:

Intergovernmental Panel on Climate Change

LCA:

Life Cycle Assessment

N:

Nitrogen

N2O:

Nitrous Oxide

WF:

Water Footprint

References

  • Akiyama H, Yagi K, Yan X (2005) Direct NO emissions from rice paddy fields: summary of available data. Global Biogeochem Cycles 19:GB1005. https://doi.org/10.1029/2004GB002378

    Article  CAS  Google Scholar 

  • Alam MS, Alam MR, Islam KK (2005) Energy flow in agriculture: Bangladesh. Am J Environ Sci 1(3):213e20

    Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Allen B, Kretschmer B, Baldock D, Menadue H, Nanni S, Tucker G (2014) Space for energy crops –assessing the potential contribution to Europe’s energy future. In: Report produced for BirdLife Europe, European Environmental Bureau and Transport & Environment. IEEP, London, pp 1–69

    Google Scholar 

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., CRC Press- a Tayler and Francis Group, Oakville, p 400. https://doi.org/10.1201/9780429276026. ISBN: 9781771888110

    Book  Google Scholar 

  • Bell MJ, Wall E, Russell G, Morgan C, Simm G. (2010) et al., “Effect of breeding for milk yield, diet and management on enteric methane emissions from dairy cows,” Anim Prod Sci, 50(8):817–826

    Google Scholar 

  • Beringer J, Hutley LB, Tapper NJ, Coutts A, Kerley A, O’Grady AP (2003) Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int J Wildland Fire 12:333–340

    Article  Google Scholar 

  • Blengini GA, Brizio E, Cibrario M, Genon G (2011) LCA of bioenergy chains in Piedmont (Italy): a case study to support public decision makers towards sustainability. Resour Conserv Recycl 57:36–47

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16:1080

    Article  Google Scholar 

  • Brankatschk G, Finkbeiner M (2015) Modeling crop rotation in agricultural LCAs-challenges and potential solutions. Agric Syst 138:66–76

    Article  Google Scholar 

  • Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U (2016) How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59:152–164

    Article  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119e29. https://doi.org/10.1016/j.iswcr.2015.05.002

    Article  Google Scholar 

  • Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116

    Article  Google Scholar 

  • Cerri CC, Bernoux M, Cerri CEP, Feller C (2004) Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use Manag 20:248–254

    Article  Google Scholar 

  • Chapagain A, James K (2011) The water and carbon footprint of household food and drink waste in the UK. Waste and Resources Action Programme (WRAP), Banbury

    Google Scholar 

  • Chen GQ, Jiang MM, Chen B, Yang ZF, Lin C (2006) Energy analysis of Chinese agriculture. Agric Ecosyst Environ 115:161–173

    Article  Google Scholar 

  • Chen Y, Ale S, Rajan N, Munster CL (2017) Assessing the hydrologic and water quality impacts of biofuel-induced changes in land use and management. Glob Change Biol Bioenergy 9(9):1461–1475

    Article  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Article  Google Scholar 

  • Clemens J, Ahlgrimm HJ (2001) Greenhouse gases from animal husbandry: mitigation options. Nutr Cycl Agroecosyst 60:287–300

    Article  Google Scholar 

  • Colomb V, Touchemoulin O, Bockel L, Chotte JL, Martin S, Tinlot M, Bernoux M (2013) Selection of appropriate calculators for landscape-scale greenhouse gas assessment for agriculture and forestry. Environ Res Lett 8:015029

    Article  CAS  Google Scholar 

  • Conant RT, Paustian K, Del Grosso SJ, Parton WJ (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr Cycl Agroecosyst 71:239–248

    Article  CAS  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355

    Article  Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res 41:165–195

    Article  CAS  Google Scholar 

  • Denef K, Paustian K, Archibeque S, Biggar S, Pape D. (2012) Report of greenhouse gas accounting tools for agriculture and forestry sectors. Interim report to USDA under Contract No. GS23F8182H, p 1–135

    Google Scholar 

  • Derner JD, Boutton TW, Briske DD (2006) Grazing and ecosystem carbon storage in the north American Great Plains. Plant Soil 280:77–90

    Article  CAS  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel I, Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Tillage Res 81:87–95

    Article  Google Scholar 

  • Ellen MacArthur Foundation (2017) A new textiles economy: redesigning fashion’s future. 150 p. http://www.ellenmacarthurfoundation.org/publications

  • European Commission Directive (2009) EC of the European Parlament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. In: Union OJotE, editor. Brussels: The European Parliament and the Council of the European Union

    Google Scholar 

  • Eurostat (2014) Final Energy Consumption by Sector and Fuel. 2014. Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1#. Tab-related-briefings. Accessed 5 Feb 2019

  • FAO (2001) Soil carbon sequestration for improved land management. World Soil Resources Reports No. 96. FAO, Rome, 58pp

    Google Scholar 

  • FAO (2003) World agriculture: towards 2015/2030. An FAO perspective. FAO, Rome. 97pp

    Google Scholar 

  • FAOSTAT (2006) FAOSTAT Agricultural Data. Available at: http://faostatfaoorg/. Accessed 26 Mar 2007

  • FAOSTAT (2019) Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billionaround 2100,” United Nations un.org, Food and Agriculture Organization of the United Nations, Accessed 13 Sept 2019. fao.org

  • Farooq M, Flower KC, Jabran K, Wahid A, Siddique KHM (2011) Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res 117:172e83. https://doi.org/10.1016/j.still.2011.10.001

    Article  Google Scholar 

  • Favier A, De Wolf C, Scrivener KL, Habert G (2018) A sustainable future for the European cement and concrete industry. Technology assessment for full decarbonisation of the industry by 2050. doi:https://doi.org/10.3929/ethz-b-000301843

  • Foley JA, DeFries R, Asner G, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Dailey GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Follett RF (2001) Organic carbon pools in grazing land soils. In: Follett RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton, pp 65–86

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2019) Agroforestry. Available online: http://www.fao.org/forestry/

  • Forsgren M, Ostgren E, Tschiesner A (2019) Harnessing momentum for electrification in heavy machinery and equipment. April 2019. McKinsey.com

  • Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Galloway JN (2003) The global nitrogen cycle. Treatise Geochem 8:557–583

    Article  Google Scholar 

  • Ghorbani R, Mondani F, Amirmoradi S, Feizi H, Khorramdel S, Teimouri M, Sanjani S, Anvarkhah S, Aghel H (2011) A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl Energy 88:283e8. https://doi.org/10.1016/j.apenergy.2010.04.028

    Article  Google Scholar 

  • Gissén C, Prade T, Kreuger E, Nges IA, Rosenqvist H, Svensson S-E, Maikael L, Jan Erik M, Pal B, Lovisa B (2014) Comparing energy crops for biogas production – yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64:199–210

    Article  CAS  Google Scholar 

  • Gregorich EG, Rochette P, van den Bygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Tillage Res 83:53–72

    Article  Google Scholar 

  • Harmsen JHM (2019) Non-CO2 greenhouse gas mitigation in the 21st century. Utrecht University, Utrecht

    Google Scholar 

  • Helgason BL, Janzen HH, Chantigny MH, Drury CF, Ellert BH, Gregorich EG, Lemke E, Pattey PR, Wagner Riddle C (2005) Toward improved coefficients for predicting direct NO emissions from soil in Canadian agroecosystems. Nutr Cycl Agroecosyst 71:87–99

    Article  CAS  Google Scholar 

  • Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. Int J Agric Sustain 7:107–118

    Article  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Phil Trans R Soc B 363:543e55

    Article  Google Scholar 

  • Hoekstra AY (2013) (2013) the water footprint of modern consumer society. Routledge, London

    Book  Google Scholar 

  • Hoekstra AY, Chapagain AK (2008) Globalization of water: sharing the planet’s freshwater resources. Wiley-Blackwell, Hoboken, pp 12–15

    Google Scholar 

  • Hristov AN, Oh J, Giallongo F, Fredreick TW, Harper MT, Weeks HL, Branco AF, Moate PJ, Deighton MH, Williams SRO, Kindermann M, Duval S (2015) An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. PNAS 112(34):10663–10668. https://doi.org/10.1073/pnas.1504124112

    Article  CAS  PubMed  Google Scholar 

  • Hulsbergen KJ, Feil B, Biermann S, Rathke GW, Kalk WD, Diepenbrock WA (2001) Method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric Ecosyst Environ 86:303–321

    Article  Google Scholar 

  • International Standardization Organization (ISO) (2014) Environmental Management—Water Footprint—Principles, Requirements and Guidelines. ISO 14046: 2014. European Committee for Standardization, Brussels

    Google Scholar 

  • IPCC (2001) Climate change (2001) the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 881pp

    Google Scholar 

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. In: Agriculture, forestry and other land use, 4. Hayama, Japan: Prepared by the National Greenhouse Gas Inventories Programme

    Google Scholar 

  • IPCC (2014) Summary for Policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K et al (eds) Climate Change 2014: Mitigation of Climate Change Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–32

    Google Scholar 

  • IPCC (2018) C40, protecting our capital; intergovernmental panel on climate change (IPCC), ‘chapter 3: impacts of 1.5°C of global warming on natural and human systems’ in global warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

    Google Scholar 

  • IRP and UNEP (2018) The weight of cities: resource requirements of future urbanization. 280 p, Job No: DTI/2172/PA; ISBN: 978-92-807-3699-1

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems - a soil science perspective. Agric Ecosyst Environ 104:399417

    Article  CAS  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer Nature Singapore Pte Ltd., Singapore. eISBN: 978-981-13-6830-1, Hardcover ISBN: 978-981-13-6829-5, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018a) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7 (Hardcover), pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018b) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, A Division of Astral International Pvt. Ltd, New Delhi, pp 231–247. ISBN: 9789351248880

    Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., CRC Press- a Tayler and Francis Group, Oakville, p 335. https://doi.org/10.1201/9780429057274. ISBN: 978-1-77188-790-8 (Hardcover), 978-0-42957-274-8 (E-book).

    Book  Google Scholar 

  • Jørgensen A, Bikker P, Herrmann IT (2012) Assessing the greenhouse gas emissions from poultry fat biodiesel. J Clean Prod 24:85–91. https://doi.org/10.1016/j.jclepro.2011.11.011

    Article  CAS  Google Scholar 

  • Kehagias MC, Michos MC, Menexes GC, Mamolos AP, Tsatsarelis CA, Anagnostopoulos CD, Kalburtji KL (2015) Energy equilibrium and carbon dioxide, methane, and nitrous oxide-emissions in organic, integrated and conventional apple orchards related to Natura 2000 site. J Clean Prod 91:89–95

    Article  CAS  Google Scholar 

  • Khalil MAK, Shearer MJ (2006) Decreasing emissions of methane from rice agriculture. In: Soliva CR, Takahashi J, Kreuzer M (eds) Greenhouse gases and animal agriculture: an update. Elsevier, Amsterdam, pp 33–41. International Congress Series No. 1293

    Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kizilaslan H (2009) Input–output energy analysis of cherries production in Tokat Province of Turkey. Appl Energy 86:1354–1358

    Article  Google Scholar 

  • Korontzi S, Justice CO, Scholes RJ (2003) Influence of timing and spatial extent of savannah fires in southern Africa on atmospheric emissions. J Arid Environ 54:395–404

    Article  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Li TX, Balezentis T, Makutenie ED, Streimikiene D, Krisciukaitiene I (2016) Energy-related CO emission in European Union agriculture: driving forces and possibilities for reduction. Appl Energy 180:682–694

    Article  Google Scholar 

  • Lima BL de C, Silva ÊF de F, Santos HRB, De Souza ER (2018) Potassium fertilization and irrigation with treated wastewater on gas exchange of colored cotton. Rev Bras Eng Agríc Ambient 22(11):741–746

    Article  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686e97

    Article  CAS  Google Scholar 

  • Machado PLOA, Freitas PL (2004) No-till farming in Brazil and its impact on food security and environmental quality. In: Lal R, Hobbs PR, Uphoff N, Hansen DO (eds) Sustainable agriculture and the international rice-wheat system. Marcel Dekker, New York, pp 291–310

    Google Scholar 

  • Madari B, Machado PLOA, Torres E, Andrade AG, Valencia LIO (2005) No tillage and crop rotation effects on soil aggregation and organic carbon in a Fhodic Ferralsol from southern Brazil. Soil Tillage Res 80:185–200

    Article  Google Scholar 

  • Mandal K, Saha K, Ghosh P, Hati K, Bandyopadhyay K (2002) Bioenergy and economic analysis of soybean-based crop production systems in Central India. Biomass Bioenergy 23:337e45. https://doi.org/10.1016/S0961-9534(02)00058-2

    Article  Google Scholar 

  • Material Economics (2018) The circular economy: A powerful force for climate mitigation. Transformative innovation for prosperous and low-carbon industry. In: Executive summary. The Council, Olympia, pp 1–8

    Google Scholar 

  • McSwiney CP, Robertson GP (2005) Nonlinear response of NO flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Chang Biol 11:1712–1719

    Article  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10. ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7(Hardcover)

    Book  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 46:214–223

    Article  Google Scholar 

  • Michos MC, Menexes GC, Kalburtji KL, Tsatsarelis CA, Anagnostopoulos CD, Mamolos AP (2017) Could energy flow in agro-ecosystems be used as a “tool” for crop and farming system replacement? Ecol Indic 73:247–253

    Article  Google Scholar 

  • Michos MC, Menexes GC, Mamolos AP, Tsatsarelis CA, Anagnostopoulos CD, Tsaboula AD, Kalburtji KL (2018) Energy flow, carbon and water footprints in vineyards and orchards to determine environmentally favourable sites in accordance with Natura 2000 perspective. J Clean Prod 187:400–408

    Article  CAS  Google Scholar 

  • Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    Article  CAS  Google Scholar 

  • Moomow W, Yamba F, Kamimoto M, Maurice L, Nyboer J, Urama K et al (2011) Introduction. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, New York

    Google Scholar 

  • Mosier A, Kroeze C (2000) Potential impact on the global atmospheric NO budget of the increased nitrogen input required to meet future global food demands. Chemosphere-Global Chang Sci 2:465–473

    Article  CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Clim Chang 40:39–80

    Article  CAS  Google Scholar 

  • Munoz R, Llanos J (2012) Estimation of the lifespan of agricultural tractor using a diffusion model at the aggregate level. Cien Inv Agric 39(3):557–562

    Article  Google Scholar 

  • Nemecek T, Hayer F, Bonnin E, Carrouée B, Schneider A, Vivier C (2015) Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur J Agron 65:40–51

    Article  Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65

    Article  CAS  Google Scholar 

  • Ozkan B, Fert C, Karadeniz CF (2007) Energy and cost analysis for greenhouse and open-field grape production. Energy 32:1500–1504

    Article  Google Scholar 

  • Ozpinar S, Ozpinar A (2011) Influence of tillage and crop rotation systems on economy and weed density in a semi-arid region. J Agric Sci Technol 13:769e84

    Google Scholar 

  • Pan GX, Zhou P, Zhang XH, Li LQ, Zheng JF, Qiu DS, Chu QH (2006) Effect of different fertilization practices on crop C assimilation and soil C sequestration: a case of a paddy under a longterm fertilization trial from the tai Lake region, China. Acta Ecol Sin 26(11):3704–3710

    CAS  Google Scholar 

  • Parihar CM, Jat SL, Singh AK, Kumar B, Pradhan S, Pooniya V, Dhauja A, Chaudhary V, Jat ML, Jat RK, Yadav OP (2016) Conservation agriculture in irrigated intensive maize-based systems of northwestern India: effects on crop yields, water productivity and economic profitability. F Crop Res 193:104e16. https://doi.org/10.1016/j.fcr.2016.03.013

    Article  Google Scholar 

  • Paustian K, Babcock BA, Hatfield J, Lal R, McCarl BA, McLaughlin S, Mosier A, Rice C, Robertson GP, Rosenberg NJ, Rosenzweig C, Schlesinger WH, Zilberman D (2004) Agricultural mitigation of greenhouse gases: science and policy options. CAST (Council on Agricultural Science and Technology) Report R141:2004. ISBN 1-887383-26-3, 120pp

    Google Scholar 

  • Pimentel D, Herdendorf M, Eisenfeld S, Olander L, Carroquino M, Corson C, McDade J, Chung Y, Cannon W, Roberts J (1994) Achieving a secure energy future: environmental and economic issues. Ecol Econ 9(3):201–219

    Article  Google Scholar 

  • Platis DP, Anagnostopoulos CD, Tsaboula AD, Menexes GC, Kalburtji KL, Mamolos AP (2019) Energy analysis, and carbon and water footprint for environmentally friendly farming practices in agroecosystems and agroforestry. Sustainability 11:1664

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., CRC Press- A Tayler and Francis Group, BurlingtonISBN: 9781771888226, p 383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Ramachandra TV (2019) Energy footprint of India: scope for improvements in end-use energy efficiency and renewable energy. In: Muthu S (ed) Energy footprints of the energy sector. Environmental footprints and eco-design of products and processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2457-4_3

    Chapter  Google Scholar 

  • Recanati F, Arrigoni A, Scaccabarozzi G, Marveggio D, Melià P, Dotelli G (2018) LCA towards sustainable agriculture: the case study of Cupuaçu Jam from agroforestry. Procedia CIRP 69:557–561

    Article  Google Scholar 

  • Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating NO emissions from legumes. Nutr Cycl Agroecosyst 73:171–179

    Article  CAS  Google Scholar 

  • Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T (2009) A review of life cycle assessment (LCA) on some food products. J Food Eng 90:1–10

    Article  Google Scholar 

  • Salim I, Lijó L, Moreira MT, Feijoo G (2019) Addressing environmental criteria and energy footprint in the selection of feedstocks for bioenergy production. In: Muthu S (ed) Energy footprints of the energy sector. Environmental footprints and eco-design of products and processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2457-4_1

    Chapter  Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  CAS  PubMed  Google Scholar 

  • Sass RL (2003) CH4 emissions from rice agriculture. In: Good practice guidance and uncertainty management in national greenhouse gas inventories. Institute for Global Environmental Strategies/IPCC, Hayama, pp 1–19

    Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095

    Article  CAS  Google Scholar 

  • Schnabel RR, Franzluebbers AJ, Stout WL, Sanderson MA, Stuedemann JA (2001) The effects of pasture management practices. In: Follett RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton, pp 291–322

    Google Scholar 

  • Scholes RJ, Biggs R (2004) Ecosystem services in southern Africa: a regional assessment. CSIR, Pretoria

    Google Scholar 

  • Scholes RJ, van der Merwe MR (1996) Sequestration of carbon in savannas and woodlands. Environ Prof 18:96103

    Google Scholar 

  • Schuman GE, Herrick JE, Janzen HH (2001) The dynamics of soil carbon in rangelands. In: Follett RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton, pp 267–290

    Google Scholar 

  • Siregar K, Tambunan AH, Irwanto AK, Wirawan SS, Araki T (2015) A comparison of life cycle assessment on oil palm (Elaeis guineensis Jacq.) and physic nut (Jatropha curcas Linn.) as feedstock for biodiesel production in Indonesia. Energy Procedia 65:170–179

    Article  CAS  Google Scholar 

  • Snape WJ III (2010) Joining the convention on biological diversity: a legal and scientific overview of why the United States must wake up. Sustain Dev Law Policy 3:6

    Google Scholar 

  • Sorensen CG, Halberg N, Oudshoorn FW, Petersen BM, Dalgaard R (2014) Energy inputs and GHG emissions of tillage systems. Biosyst Eng 120:2–14

    Article  Google Scholar 

  • Soussana JF, Loiseau P, Viuchard N, Ceschia E, Balesdent J, Chevallier AD (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Article  Google Scholar 

  • Taxidis ET, Menexes GC, Mamolos AP, Tsatsarelis CA, Anagnostopoulos CD, Kalburtji KL (2015) Comparing organic and conventional olive groves relative to energy use and greenhouse gas emissions associated with the cultivation of two varieties. Appl Energy 149:117–124

    Article  CAS  Google Scholar 

  • Unakitan G, Aydin B (2018) A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: a case study in Thrace region. Energy 149:279–285

    Article  Google Scholar 

  • UNEP and IEA (2017) Towards a zero-emission, efficient, and resilient buildings and construction sector, Global Status Report 2017. UN Environment and International Energy Agency, Paris

    Google Scholar 

  • US (2009) Global change research program, global climate change impacts in the United States. Available at http://downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-report.pdf

  • US-EPA (2006a) Global Anthropogenic Non-CO Greenhouse Gas Emissions: 19902020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, D.C. http://www.epa.sgov/nonco2/econ inv/downloads/GlobalAnthroEmissionsReport.pdf. Accessed 26 Mar 2007

  • US-EPA (2006b) Global mitigation of non-CO22 greenhouse gases. United States Environmental Protection Agency, EPA 430-R-06-005,Washington. http://www.epa.gov/nonco2/econ-inv/downloads/GlobalMitigationFullReport.pdf. Accessed 26 Mar 2007

  • Van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN (2004) Response of savanna fire regimes to changing fire-management policies in a large African National Park. Conserv Biol 18:1533–1540

    Article  Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Neue H, Samonte H (1997) Effect of cultivar difference on methane emissions. Agric Ecosyst Environ 62:31–40

    Article  Google Scholar 

  • Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint. A catalyst for life cycle assessment? J Ind Ecol 12:3–6

    Article  Google Scholar 

  • Xu H, Cai ZC, Tsuruta H (2003) Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Sci Soc Am J 67:1147–1157

    Article  CAS  Google Scholar 

  • Zhang WF, Dou ZX, He P, Ju XT, Powlson D, Chadwick D, Norse D, Lu YL, Zhang Y, Wu L, Chen XP, Cassman KG, Zhang FS (2013) New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. PNAS 110(21):8375–8380. https://doi.org/10.1073/pnas.1210447110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Jhariya, M.K., Raj, A., Yadav, D.K., Khan, N., Meena, R.S. (2021). Energy and Climate Footprint Towards the Environmental Sustainability. In: Banerjee, A., Meena, R.S., Jhariya, M.K., Yadav, D.K. (eds) Agroecological Footprints Management for Sustainable Food System. Springer, Singapore. https://doi.org/10.1007/978-981-15-9496-0_14

Download citation

Publish with us

Policies and ethics