Skip to main content

Involvement of Synergistic Interactions Between Plant and Rhizospheric Microbes for the Removal of Toxic/Hazardous Contaminants

  • Chapter
  • First Online:
  • 451 Accesses

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The abundance of toxic heavy metals, organic and inorganic pollutants, xenobiotic chemicals and contaminants pose a major threat to the environment which is linked to the health of the living systems including human beings and needs an eco-friendly remediation technology. This technology may not only reduce the pollution level by degradation or detoxification of such hazardous pollutants but also does not generate any secondary or intermediate pollutants. Phytoremediation is an advanced and efficient plant-based treatment technology that takes advantage of the remarkable ability of the plants to tolerate and grow at higher concentration of pollutants/contaminants. The mechanisms used by the plants for the removal of toxic components from the surroundings include accumulation, absorption or transformation of the toxic compounds in their tissues, leaf, stem and roots. In addition to this, plant-associated microbes also play an important role to enhance the efficiency of phytoremediation process. In recent years, understanding the knowledge of the synergistic relationship between plants and microbes for the removal of unwanted chemicals becomes an interesting area of research. Understanding the physiological and molecular mechanisms of plant–microbe interaction helps the environmentalists to get an insight of this technology and to improve and expand new horizons of phytoremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhilash MR, Srikantaswamy S, Shiva Kumar D, Jagadish K, Shruthi L (2016) Phytoremediation of heavy metal industrial contaminated soil by Spinacia oleracea L. and Zea mays L. Int J Appl Sci 4(1):192–199

    Google Scholar 

  • Adams A, Raman A, Hodgkins D (2013) How do plants used in phytoremediation in constructed wetlands, a sustainable remediation wetlands, perform in heavymetal-contaminated mine sites? Water Environ. https://doi.org/10.1111/j.1747-6593.2012.00357.x

  • Adieze IE, Orji JC, Nwabueze RN, Onyeze GOC (2012) Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. Int J Environ Stud 69(3):490–500

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability and over stimulation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265. https://doi.org/10.1021/es001069t

    Article  CAS  Google Scholar 

  • Ascarrunz ME, Tirado N, Gonzáles AR, Cuti M, Cervantes R, Huici O, Jors E (2006) Evaluación de riesgo genotóxico: biomonitorización de trabajadores agrícolas de Caranavi, Guanay, Palca y Mecapaca, expuestos a plaguicidas. Cuad Hosp Clín 51(1):7–18

    Google Scholar 

  • Asemoloye MD, Ahmad R, Jonathan SG (2017) Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil-polluted soil. Chemosphere 187:1–12

    Article  CAS  Google Scholar 

  • Asemoloye MD, Jonathan SG, Ahmad R (2019) Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils. Int J Phytol 21(2):71–83

    Article  CAS  Google Scholar 

  • ATSDR (2008) Agency for toxic substances and disease registry. U.S. Department of Health and Human Services. Public Health Service, Atlanta

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements-review of the distribution, ecology, and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38

    Article  CAS  Google Scholar 

  • Barlow F (1985) Chemistry and formulation. In: Haskel PT (ed) Pesticide application: principles and practice. Oxford University Press, Oxford, pp 1–34

    Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280

    Article  CAS  Google Scholar 

  • Bhaduri D, Pal S, Purakayastha TJ, Chakraborthy K, Yadav RS, Akhtar MS (2015) Soil quality and plant microbe interactions in rhizosphere. Sust Agric Rev 17:307–335

    Article  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Google Scholar 

  • Bolognesi C, Merlo FD (2011) Pesticides: human health effects. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 438–453

    Chapter  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Google Scholar 

  • Campbell S, Paquin D, Awaya JD, Li QX (2002) Remediation of benzo (a) pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). Int J Phytol 4:157–168

    Article  CAS  Google Scholar 

  • Cheema SA, Khan MI, Shen C, Tang X, Farooq M, Chen L, Chen Y (2009) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 16:207–211

    Google Scholar 

  • Chibuike GU (2013) Use of mycorrhiza in soil remediation. Sci Res Essays 835:1679–1687

    Google Scholar 

  • Das S, Goswami S, Talukdar AD (2014) A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxicol 92:169–174

    Article  CAS  Google Scholar 

  • Dhir B (2013) Phytoremediation: role of aquatic plants in environmental clean-up. https://doi.org/10.1007/978-81-322-1307-9_3

  • Diaz Martinez ME, Argumedo-Delira RS, Trejo-Tellez LI (2018) Lead phytoextraction from printed circuit computer boards by Lolium Perenne L. and Medicago sativa L. Int J Phytorem 20(5):432

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah D, Malaviya K (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Cao L, Huang J, Ji R, Wang X, Wu J, Zhu J, Guo H (2011) Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. J Hazard Mater 188:408–413

    Article  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Flora SJS, Saxena G, Gautam KP, Gill KD (2007) Lead induced oxidative stress and alterations in biogenic amines in different rat brain regions and their response to combined administration of DMSA and MiADMSA. Chem Biol Interact 170:209–220

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and phytotransformation of o,p’-DDT and p,p-DDT by axenically cultivated aquatic plants. J Agric Food Chem 481(1):6121–6127

    Google Scholar 

  • Garg N, Singla P, Bhandari P (2014) Metal uptake, oxidative metabolism, and mycorrhization in pigeon pea and pea under arsenic and cadmium stress Turk. J Agric For 39:234–250

    Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plant and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836. https://doi.org/10.3389/fmicb.2016.01836

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

  • Goland GA (2006) Plant tolerance to heavy metals, a risk for food toxicity or a means for food fortification with essential metals: the Allium schoenoprasum model. In: Twardowska I, Allen HE, Haggblom MM (eds) Soil and water pollution monitoring, protection and remediation. Springer, Cham, pp 479–478

    Google Scholar 

  • IARC (1990) IARC monographs on the evaluation of carcinogenic risks to humans, vol 49. IARC Scientific Publications, Lyon

    Google Scholar 

  • Irfan M, Hayat S, Ahmad A, Alyemeni MN (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20(1):1–10

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticide, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Lal S, Ratna S, Said OB, Kumar R (2018) Biosurfactant and exopolysaccharaide-assisted rhizobacterial techniques for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263

    Google Scholar 

  • Landrum P, Giesy J, Oris J, Allred P (1987) Photoinduced toxicity of polycyclic aromatic hydrocarbons to aquatic organisms. In: Oil in freshwater: chemistry, biology, countermeasure technology. Pergamon, Elmsford, pp 304–318

    Chapter  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439. https://doi.org/10.1007/s12257-013-0193-8

    Article  CAS  Google Scholar 

  • Lee BK, Vu VT (2010) Sources, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) in particulate matter. In: Villanyi V (ed) Air pollution, pp 99–120

    Google Scholar 

  • Lotfy SM, Mostafa AZ (2014) Phytoremediation of contaminated soil with cobalt and chromium. J Geochem Explor 144:367–373

    Article  CAS  Google Scholar 

  • Lundstedt S, White PA, Lemieux CL (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36(6):475–485

    Article  CAS  Google Scholar 

  • Lushchaka VI, Matyiishyna TM, Husaka VV, Storeyb JM, Storeyb KB (2018) Pesticide toxicity: a mechanistic approach. https://doi.org/10.17179/excli2018-1710

  • Ma Y, Oliviera RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanism of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00918

  • Marzooghi SM, DI Toro DM (2017) A critical review of polycyclic aromatic hydrocarbon phototoxicities models. Environ Toxicol Chem 36(5):1138–1148

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health 34(1):1–32. https://doi.org/10.1080/10590501.2015.1096883

    Article  CAS  Google Scholar 

  • Mishra S, Sartele GD, Ferreira LFR and Bharagava RN (2019) Plant-microbe interactions: an ecofriendly approach for the remediation of metal contaminated environments. Mater Sci Mater Eng. https://doi.org/10.1016/B987-0-12-803581-8.11508-5.

  • Morikawa H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:15533–11558

    Article  CAS  Google Scholar 

  • Muller KE, Shann JR (2006) PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64(6):1006–1014

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Olette R, Couderchet M, Biaginati S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70:1414–1421

    Article  CAS  Google Scholar 

  • Ozyigit II and Dogan I (2015) Plant microbe interactions in phytoremediation. Soil Remediat Plants. https://doi.org/10.1016/B978-0-12-799937-1.00009-7

  • Ramos KS, Moorthy B (2005) Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Metab Rev 37(4):595–610. https://doi.org/10.1080/03602530500251253

    Article  CAS  Google Scholar 

  • Rashmi V, Shylaja NR, Rajalaksmi S, D’Souza F, Prabaharan D, Uma L (2013) Siderophore mediated uranium sequestration by marine cyanobacterium Synechococcus elongates. Bioresour Technol 130:204–210

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Rusiecki JK, Baccarelli A, Bollati V, Tarantini L, Mooore LE, Bonefeld-Jorgenson EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic unit. Environ Health Perspect 116:1547–1552

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, David RJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  Google Scholar 

  • Saleh HM (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl Eng Des 242:425–432

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2015) Ecology of bacterial endophytes with wetland plants growing in textile effluent for pollutant-degradation and plant growth promotion potential. Plant Biosyst. https://doi.org/10.1080/11263504.2015.1022238

  • Sheng XF, Xia JJ (2006) Imporement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042

    Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem 46:5–7

    Article  CAS  Google Scholar 

  • Singh A, Fulekar MH (2012) Phytoremediation of heavy metals by Brassica juncea in aquatic and terrestrial environment. In: The plant family brassicaceae: contribution towards phytoremediation. Springer, Cham, pp 153–169

    Chapter  Google Scholar 

  • Singh P, DeMarini DM, Dick CAJ, Tabor DG, Ryan JV, Linak WP (2004) Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ Health Perspect 112:820–825. https://doi.org/10.1289/ehp.6579

    Article  CAS  Google Scholar 

  • Sohail E, Waseem A, Chae WL, Jong JL, Imitiaz H (2004) Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Exp Oncol 26(2):98–105

    Google Scholar 

  • Sumiahadi A, Acar R (2018) A review of phytoremediation technology: heavy metals uptake by plants. IOP Conf Ser 142:012023. https://doi.org/10.1088/1755-1315/142/1/012023

    Article  Google Scholar 

  • Takeda R, Sato Y, Yoshimura R, Komemushi S, Sawabe A (2006) Accumulation of heavy metals by cucumber and Brassica juncea under different cultivation conditions. In: Proc. Ann. Int. Conf. on soil sediments water energy (Massachusetts), vol 11. The Berkeley Electronic Press, Berkeley, pp 293–299

    Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol Pathol 31(6):575–588

    CAS  Google Scholar 

  • Tondon SA, Deore R, Parab A (2016) Removal of pesticide carbofuran using wetland plants. Int J Adv Biol Res 6(4):482–485

    Google Scholar 

  • Tondon SA, Deore R (2017) Removal of pesticide monocrotophos using wetland plants. Global J Biosci Biotechnol 6(4):671–676

    Google Scholar 

  • Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50:395–403

    CAS  Google Scholar 

  • Weyens N, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interaction and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604. https://doi.org/10.3390/ijms161025576

    Article  CAS  Google Scholar 

  • White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw ISRN Ecol 20:402647. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43(4):812–819. https://doi.org/10.1016/j.atmosenv.2008.10.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The senior author is highly thankful to all the contributors for their suggestions in writing, editing and proofreading of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Mulla, S.I., Saha, S., Kharat, A.S., More, N., Bharagava, R.N. (2021). Involvement of Synergistic Interactions Between Plant and Rhizospheric Microbes for the Removal of Toxic/Hazardous Contaminants. In: Sharma, A. (eds) Microbes and Signaling Biomolecules Against Plant Stress. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7094-0_12

Download citation

Publish with us

Policies and ethics