Skip to main content

Role of Substrate to Improve Biomass to Biofuel Production Technologies

  • Chapter
  • First Online:
Bioprocessing for Biofuel Production

Abstract

The requirement and demand of incessant supply of energy is inexorable and it is increasing globally every day. Traditional organic energy reservoirs, fossil fuels, are depleting while increasing environmental pollution. Considering the substantial necessity and risks, scientists are probing for substitute of renewable energy resources with lower environmental hazards. Green biotechnology finds the ways for green energy using biomass as a substrate for the generation of biofuels. Biofuel technology has gathered the attention worldwide as it is a feasible and attractive source of energy fulfilling all the current standards of energy production. Biofuel production can make more feasible and economical choosing the suitable substrate for required fuel and proper application of pretreatment and process conditions. Biofuels use photosynthetic products or cellulosic or lignocellulosic substrates as feedstock for microorganisms, and the mutual reaction after fermentation and saccharification yields biofuels. Biofuels are categorized according to the type of substrate used, and yield is dependent on the pretreatment of substrate. Pretreatments depend upon the type of substrate, and the whole synchronized process produces good commercial scale biofuels. This chapter reveals different types of substrates and their role for the production and improvement of biofuels technology. To tackle the emerging twin crisis of energy and resources, development of biofuels technology as an alternative approach of traditional nonrenewable energy system is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhay A, Albsoul A, Hadidi F, Abuothman A (2016) Optimization and modeling of biogas production from green waste/biowaste co-digestion using leachate and sludge. CLEAN–Soil, Air, Water 44(11):1557–1563

    Article  CAS  Google Scholar 

  • Abinandan S, Subashchandrabose SR, Cole N, Dharmarajan R, Venkateswarlu K, Megharaj M (2019) Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions. Bioresour Technol 271:316–324

    Article  CAS  Google Scholar 

  • Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 23:44–53

    Article  CAS  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Hadi N, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  Google Scholar 

  • Aguiar A, Ferraz A (2011) Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Química Nova 34:1729–1738

    CAS  Google Scholar 

  • Ahmad E, Pant KK (2018) Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier, Amsterdam, pp 409–444

    Chapter  Google Scholar 

  • Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11(12):3366

    Article  CAS  Google Scholar 

  • Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agr Res 5(9):772–780

    Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Lyberatos G (2012) ADM1-based modeling of methane production from acidified sweet sorghum extract in a two stage process. Bioresour Technol 106:10–19

    Article  CAS  Google Scholar 

  • Appelsa L, Lauwersa J, Degrèvea J, Helsenb L, Lievensc B, Willemsc K, Impea JV, Dewila R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15:4295–4301

    Article  CAS  Google Scholar 

  • Arnold M, Tainter JA, Strumsky D (2019) Productivity of innovation in biofuel technologies. Energy Policy 124:54–62. https://doi.org/10.1016/j.enpol.2018.09.005

    Article  CAS  Google Scholar 

  • Arora R, Sharma NK, Kumar S (2018) Valorization of by-products following the biorefinery concept: commercial aspects of by-products of lignocellulosic biomass. In: Chandel AK, Luciano Silveira MH (eds) Advances in sugarcane biorefinery. Elsevier, Amsterdam, pp 163–178

    Chapter  Google Scholar 

  • Artifon W, Bonatto C, Bordin ER, Bazoti SF, Dervanoski A, Alves SL Jr, Treichel H (2018) Bioethanol production from hydrolyzed lignocellulosic after detoxification via adsorption with activated carbon and dried air stripping. Front Bioeng Biotechnol 6:107

    Article  Google Scholar 

  • Avula SV, Reddy S, Reddy LV (2015) (2015). The feasibility of mango (Mangifera indica L.) peel as an alternative substrate for Butanol production. Bioresources 10:4453–4459

    Article  Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  • Azbar N, Dokgöz FTÇ, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34(17):7441–7447

    Article  CAS  Google Scholar 

  • Balan V, da Costa SL, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods. Biotechnol Prog 25:365–375

    Article  CAS  Google Scholar 

  • Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energ 126:21–29

    Article  CAS  Google Scholar 

  • Beetul K, Bibi Sadally S, Taleb-Hossenkhan N et al (2014) An investigation of biodiesel production from microalgae found in Mauritian waters. Biofuel Res J 1:58–64

    Article  CAS  Google Scholar 

  • Bellido C, Loureiro Pinto M, Coca M, González-Benito G, García-Cubero MT (2014) Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205

    Article  CAS  Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102(8):5207–5213

    Article  CAS  Google Scholar 

  • Bioenergy E. (2019) Commercial-scale demonstrations of algae for biofuels production. https://www.etipbioenergy.eu/value-chains/conversion-technologies/advanced-technologies/conversion-of-aquatic-biomass/commercial-scale-demonstrations-of-algae-for-biofuels-production

  • Bramono SE, Lam YS, Ong SL, He J (2011) A Mesophilic Clostridium species that produces Butanol from Monosaccharides and hydrogen from polysaccharides. Bioresour Technol 102:9558–9563

    Article  CAS  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73

    Article  CAS  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    Article  CAS  Google Scholar 

  • Cao LY, Li K, Li F, Tong Y, Bai FW, Liu CG (2018) Progress on key technology of lignocellulosic ethanol. Biotechnol Business 04:25–32

    Google Scholar 

  • Cara C, Ruiz C, Oliva JM, Saez F, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Bioresour Technol 99:1869–1876

    Article  CAS  Google Scholar 

  • Carraretto C, Macor A, Mirandola A, Stoppato A, Tonon S (2004) Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29:2195–2211

    Article  CAS  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84-86:5–37

    Article  CAS  Google Scholar 

  • Chen W-H, Chen Y-C, Lin J-G (2013) Evaluation of biobutanol production from nonpretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour Technol 135:2628

    Article  Google Scholar 

  • Chen W-C et al (2017) Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 79:43

    Article  CAS  Google Scholar 

  • Chen Y, Zhou Y, Qin Y, Liu D, Zhao X (2018) Evaluation of the action of tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: pretreatment, hydrolysis conditions and lignin structure. Bioresour Technol 269:329–338

    Article  CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  • Cheng CL, Lo YC, Lee KS, Duu JL, Lin CY, Chang JS (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102:8514–8523

    Article  CAS  Google Scholar 

  • Cheng C-L, Che P-Y, Chen B-Y, Lee W-J (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9

    Article  CAS  Google Scholar 

  • Chong PS, Jahim JM, Harun S, Lim SS, Mutalib SA, Hassan O, Nor MTM (2013) Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. Int J Hydrogen Energy 38(22):9592–9599

    Article  CAS  Google Scholar 

  • Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO (2009) Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 50(1):131–137

    Article  CAS  Google Scholar 

  • Chuetor S, Champreda V, Laosiripojana N (2019) Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation. Bioresour Technol 292:121966. https://doi.org/10.1016/j.biortech.2019.121966

    Article  CAS  Google Scholar 

  • Clark JH, Deswarte FEI, Farmer TJ (2009) The integration of green chemistry into future biorefineries. Biofuels Bioprod Biorefin 3:72–90

    Article  CAS  Google Scholar 

  • Cui M, Yuan Z, Zhi X, Wei L, Shen J (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int J Hydrog Energy 35(9):4041–4047

    Article  CAS  Google Scholar 

  • Dahunsi OS, Oranusi S, Efeovbokhan EV (2017a) Anaerobic mono-digestion of Tithonia diversifolia (wild Mexican sunflower). Energy Convers Manag 148:128–145

    Article  CAS  Google Scholar 

  • Dahunsi SO, Oranusi S, Efeovbokhan VE (2017b) Cleaner energy for cleaner production: modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels. J Clean Prod 156:19–29

    Article  CAS  Google Scholar 

  • Daioglou V, Wicke B, Faaij APC, van Vuuren DP (2015) Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy 7:1321–1334

    Article  CAS  Google Scholar 

  • Dar RA, Dar EA, Kaur A, Phutela UG (2018) Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sust Energ Rev 82:4070–4090. https://doi.org/10.1016/j.rser.2017.10.066

    Article  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  CAS  Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:S151–S161

    Article  CAS  Google Scholar 

  • dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37(5):518–531

    Article  CAS  Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30:125–129

    Article  CAS  Google Scholar 

  • Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  CAS  Google Scholar 

  • Eckert CT, Frigo EP, Albrecht LP, Albrecht AJP, Christ D, Santos WG, Berkembrock E, Egewarth VA (2018) Maize ethanol production in Brazil: characteristics and perspectives. Renew Sust Energ Rev 82:3907–3912

    Article  Google Scholar 

  • Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267

    Article  CAS  Google Scholar 

  • Ericsson K, Nilsson LJ (2006) Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 30:1–15

    Article  Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (2012) Cellulose hydrolysis, vol 3. Springer Science & Business Media, Cham

    Google Scholar 

  • Fatehi P (2013) Production of biofuels from cellulose of woody biomass. InTechOpen, London, pp 45–74

    Google Scholar 

  • Fernandes MC, Ferro MD, Paulino AF, Mendes JA, Gravitis J, Evtuguin DV et al (2015) Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 186:309

    Article  CAS  Google Scholar 

  • Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, Nepomuceno AL, Molinari HBC, Bon EPS (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valoriz 1:65–76

    Article  CAS  Google Scholar 

  • Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  Google Scholar 

  • Fischer G, Prieler S, van Velthuizen H, Lensink SM, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: land productivity potentials. Biomass Bioenergy 34:159–172

    Article  Google Scholar 

  • Gabhane J, William SPMP, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102

    Article  CAS  Google Scholar 

  • Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661

    Article  CAS  Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214

    Article  CAS  Google Scholar 

  • Ghatak MD, Mahanta P (2014) Kinetic assessment of biogas production from lignocellulosic biomasses. Int J Eng Adv Technol 3(5):244–249

    Google Scholar 

  • Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    Article  CAS  Google Scholar 

  • Goh BHH, Ong HC, Cheah MY et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74

    Article  CAS  Google Scholar 

  • Gomez LD, Stelle-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485

    Article  CAS  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hailing P, Simms-Borre P (2008) Overview of lignocellulosic feedstock conversion into ethanol-focus on sugarcane bagasse. Int Sugar J 110:191–194

    Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37(17):13200–13208

    Article  CAS  Google Scholar 

  • Hari Krishna S, Chowdary GV (2000) Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J Agric Food Chem 48(5):1971–1976

    Article  CAS  Google Scholar 

  • Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pretreatments as a previous step for bioethanol production. Chem Eng J 262:939

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M et al (2011) Short-rotation woody crops for bioenergy and biofuels applications. In: Biofuels. Springer, New York, pp 139–156

    Chapter  Google Scholar 

  • Hossain N, Mahlia TMI (2019) Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol 39(6):835–859. https://doi.org/10.1080/07388551.2019.1624945

    Article  Google Scholar 

  • Hossain N, Zaini J, Mahlia TMI et al (2019a) Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renewable Energy 131:617–624

    Article  CAS  Google Scholar 

  • Hossain N, Zaini J, Mahlia T (2019b) Experimental investigation of energy properties for Stigonematales sp. microalgae as potential biofuel feedstock. Int J Sustain Eng 12:123–130

    Article  Google Scholar 

  • Huang Y, Chen Y, Xie J et al (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp and cultivated Bacillariophyta sp. Fuel 83:9–19

    Article  CAS  Google Scholar 

  • Huzir NM, Aziz MMA, Ismail SB, Abdullah B, Mahmood NAN, Umor NA, Muhammad SAFAS (2018) Agro-industrial waste to biobutanol production: eco-friendly biofuels for next generation. Renew Sust Energ Rev 94:476–485

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA) (2018) Renewables Information. In: Overview. IEA, Paris

    Google Scholar 

  • International Energy Agency (IEA) (2007) World Energy Outlook. In: China and India insights. Paris, IEA. ISBN 9789264027305

    Google Scholar 

  • Itoh H et al (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273

    Article  CAS  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001. https://doi.org/10.3390/en5124952

    Article  CAS  Google Scholar 

  • Jeong H et al (2017) Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresour Technol 245:351

    Article  CAS  Google Scholar 

  • Jerger DE, Chynoweth DR (1987) Anaerobic digestion of sorghum biomass. Biomass 14:99–113

    Article  CAS  Google Scholar 

  • Joshi G, Pandey JK, Rana S, Rawat DS (2017) Challenges and opportunities for the application of biofuel. Renew Sust Energy Rev 79:850–866

    Article  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzym Microb Technol 40(1):138–144

    Article  CAS  Google Scholar 

  • Keis S, Shaheen R, Jones TD (2011) Emended description of Clostridium Acetobutylicum and Clostridium Beijerinckii and descriptions of Clostridium Saccharoperbutylacetonicum sp nov and Clostridium Saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    Article  Google Scholar 

  • Khedkar MA, Nimbalkar PR, Chavan PV, Chendake YJ, Bankar SB (2017) Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioprocess Biosyst Eng 40:1493–1506

    Article  CAS  Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn Stover. Bioresour Technol 97:583–591

    Article  CAS  Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energy Rev 28:900–916

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Prospects of renewable bioprocessing in future energy systems. Springer, Cham, pp 1–50

    Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:1–9

    Article  CAS  Google Scholar 

  • Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911

    Article  CAS  Google Scholar 

  • Kucharska K, Hołowacz I, Konopacka-Łyskawa D, Rybarczyk P, Kamiński M (2018) Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew Energy 129:384–408

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Biores Bioprocess 4(1):7

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA (2016) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249

    Article  CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891

    Article  CAS  Google Scholar 

  • Lalak J, Kasprzycka A, Murat A, Paprota EM, Tys J (2014) Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej (artykuł przeglądowy). Acta Agrophysica 21(1):51–62

    Google Scholar 

  • Lam E, Carrer H, Da Silva JA, Kole C (2014) Compendium of bioenergy plants: sugarcane. CRC Press, BocaRaton. ISBN 1482210584

    Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquidmediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  • Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6(2):405–415

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41

    Article  CAS  Google Scholar 

  • Licari A, Monlau F, Solhy A, Buche P, Barakat A (2016) Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: glucose yield and energy efficiency. Energy 102:335–342

    Article  CAS  Google Scholar 

  • Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sust Energ Rev 16:3084–3094

    Article  CAS  Google Scholar 

  • Lin ZX, Huang H, Zhang HM, Zhang L, Yan LS, Chen JW (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872–1880

    Article  CAS  Google Scholar 

  • Lin ZX, Zhang HM, Ji XJ, Chen JW, Huang H (2011) Hydrolytic enzyme of cellulose for complex formulation applied research. Appl Biochem Biotechnol 164(1):23–33

    Article  CAS  Google Scholar 

  • Liu H, Zhu JY, Fu SY (2010) Effect of lignin–metal complexation on enzymatic hydrolysis of cellulose. J Agri Food Chem 58:7233

    Article  CAS  Google Scholar 

  • Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn Stover after pretreatment with dilute sulfuric acid. Chem Eng Technol 30:938–944

    Article  CAS  Google Scholar 

  • Lu C, Zhao J, Yang S-T, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387

    Article  CAS  Google Scholar 

  • Mahmood A, Ullah H, Ijaz M, Javaid MM, Shahzad AN, Honermeier B (2013) Evaluation of sorghum hybrids for biomass and biogas production. Aust J Crop Sci 7(10):1456–1462

    CAS  Google Scholar 

  • Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sust Energ Rev 80:743–755

    Article  Google Scholar 

  • Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M et al (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86(6):881–887

    Article  CAS  Google Scholar 

  • Markou G, Angelidaki I, Nerantzis E et al (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937

    Article  CAS  Google Scholar 

  • Mckendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  Google Scholar 

  • Mendu V, Harman-Ware AE, Crocker M, Jae J, Stork J, Morton S 3rd, Placido A, Huber G, Debolt S (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4. https://doi.org/10.1186/1754-6834-4-43

  • Mendu V, Shearin T, Campbell JE, Stork J, Jae J, Crocker M, Huber G, DeBolt S (2012) Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci 109:4014–4019

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Miao X, Li R, Yao H (2009) Effective acid-catalyzed transesterification for biodiesel production. Energ Convers Manag 50:2680–2684

    Google Scholar 

  • Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259

    Article  Google Scholar 

  • Mishra V, Jana AK, Jana MM, Gupta A (2017) Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour Technol 236:49–59

    Article  CAS  Google Scholar 

  • Moser BR (2009) Biodiesel production, properties, and feedstocks. In Vitro Cellular Develop Biol Plant 45(3):229–266

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  Google Scholar 

  • Nazarpour FL et al (2013) Biological pretreatment of rubberwood with Ceriporiopsis subvermispora for enzymatic hydrolysis and bioethanol production. Biomed Res Int 9:9

    Google Scholar 

  • Nguyen QD, Le TKP, Tran TAT (2018) A technique to smartly-reuse alkaline solution in lignocellulose pre-treatment. Chem Eng Trans 63:157–162

    Google Scholar 

  • Nie JM, Zhang RJ, Liu XY, Yang F, Wang JJ, Xiao J et al (2019) Technologies for lignocellulose pretreatment to produce fuel ethanol. In: IOP Conference Series: Earth and Environmental Science, vol 237 (4). IOP Publishing, Bristol, p 042034

    Google Scholar 

  • OECD/IEA & FAO (2017) How2Guide for Bioenergy Roadmap Development and Implementation. IEA, Paris. ISBN 978-92-5-109586-7

    Google Scholar 

  • Oilgae (2019) Algae biodiesel commercial ventures. http://www.oilgae.com/algae/oil/biod/cos/cos.html

  • Okkerse C, Van Bekkum H (1999) From fossil to green. Green Chem 1:107–114

    Article  CAS  Google Scholar 

  • Onumaegbu C, Mooney J, Alaswad A, Olabi AG (2018) Pre-treatment methods for production of biofuel from microalgae biomass. Renew Sust Energ Rev 93:16–26

    Article  CAS  Google Scholar 

  • Pan XJ, Arato C, Gilkes N, Gregg DJ, Mabee W, Pye EK, Xiao Z, Zhang X, Saddler JN (2005) Biorefining of softwoods using ethanol organosolv pulping—preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  Google Scholar 

  • Pan XJ, Xie D, Yu R, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using organosolv ethanol process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617

    Article  CAS  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672

    Article  CAS  Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I – use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    Article  CAS  Google Scholar 

  • Qureshi N, Cotta MA, Saha BC (2014) Bioconversion of barley straw and corn Stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors. Food Bioprod Process 92:298–308

    Article  CAS  Google Scholar 

  • Rabelo SC, Fonseca NA, Andrade RR, Maciel Filho R, Costa AC (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 35(7):2600–2607

    Article  CAS  Google Scholar 

  • Ramírez-Ramírez N, Romero-García ER, Calderón VC, Avitia CI, Téllez-Valencia A, Pedraza-Reyes M (2008) Expression, characterization and synergistic interactions of Myxobacter sp. AL-1 Cel9 and Cel48 glycosyl hydrolases. Int J Mol Sci 9(3):247–257

    Article  Google Scholar 

  • Richards K, Richardson J, Saddler J, Smith T, Popescu O (2006) Biofuels and bioenergy: challenges and opportunities. Biomass Bioenergy 35:4495–4496

    Article  Google Scholar 

  • Root DF, Saeman JF, Harris JF (1959) Kinetics of the acid catalyzed conversion of xylose to furfural. For Prod J 158:165

    Google Scholar 

  • Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  Google Scholar 

  • Santana AL, Meireles MAA (2014) New starches are the trend for industry applications: a review. Food Public Health 4:229–241

    Article  Google Scholar 

  • Saratale RG, Kumar G, Banu R, Xia A, Periyasamy S, Saratale GD (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    Article  CAS  Google Scholar 

  • Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U et al (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464

    Article  CAS  Google Scholar 

  • Serna-Saldivar S (2010) Cereal grains: properties, processing, and nutritional attributes. CRC Press, Boca Raton. [ISBN 9781439815601]

    Google Scholar 

  • Shafiei M et al (2013) Enhancement of ethanol production from spruce woodchips by ionic liquid pretreatment. Appl Energy 102:163

    Article  CAS  Google Scholar 

  • Sharma A, Aggarwal NK (2020) Pretreatment strategies: unlocking of lignocellulosic substrate. In: Water hyacinth: a potential lignocellulosic biomass for bioethanol. Springer, Cham, pp 37–49

    Chapter  Google Scholar 

  • Sheldon RA (2018) Enzymatic conversion of first-and second-generation sugars. In: Biomass and green chemistry. Springer, Berlin, pp 169–189

    Chapter  Google Scholar 

  • Shuai L, Yang Q, Zhu JY, Lu F, Weimer P, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute acid pretreatments of softwood spruce for cellulose ethanol production. Bioresour Technol 101:3106–3114

    Article  CAS  Google Scholar 

  • Sierra R, Granda C, Holtzaaple MT (2009) Short term lime pretreatment of poplar wood. Biotechnol Prog 25:323–332

    Article  CAS  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour. Technol. 101:1570–1580

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosicbiomass–An overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev. 14:2596–2610

    Article  CAS  Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy. 31:416–425

    Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived Synga. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methlimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  Google Scholar 

  • Tran TTA, Le TKP, Mai TP, Nguyen DQ (2019) Bioethanol production from lignocellulosic biomass. In: Alcohol fuels-current technologies and future prospect. IntechOpen, London. https://doi.org/10.5772/intechopen.86437

    Chapter  Google Scholar 

  • Tropea A, Wilson D, La Torre LG, Curto RBL, Saugman P, Troy-Davies P et al (2014) Bioethanol production from pineapple wastes. J Food Res 3(4):60

    Article  CAS  Google Scholar 

  • Uggetti E, Sialve B, Trably E, Steyer JP (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuel Bioprod Biorefin 8:516–529

    Article  CAS  Google Scholar 

  • Vasco-Correa J, Ge X, Li Y (2016) Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour Technol 203:118–123

    Article  CAS  Google Scholar 

  • Velazquez-Lucio J, Rodriguez-Jasso RM, Colla LM, Saenz-Galindo A, Cervantes-Cisneros DE, Aguilar CN et al (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 17:780–791

    Article  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017) Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material. Bioresour Technol. 241:1–9

    Article  CAS  Google Scholar 

  • Wang GS, Pan XJ, Zhu JY, Gleisner R (2009) Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotech Prog 25(4):1086–1093

    Article  CAS  Google Scholar 

  • Welker CM, Balasubramanian VK, Petti C, Rai KM, DeBolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8(8):7654–7676. https://doi.org/10.3390/en8087654

    Article  CAS  Google Scholar 

  • Wu X, Staggenborg S, Propheter JL, Rooney WL, Yu J, Wang D (2010) Features of sweet sorghum juice and their performance in ethanol fermentation. Ind Crops Prod 31(1):164–170

    Article  CAS  Google Scholar 

  • Yahmed NB, Carrere H, Marzouki MN, Smaali I (2017) Enhancement of biogas production from Ulva sp. by using solid-state fermentation as biological pretreatment. Algal Res 27:206–214

    Article  Google Scholar 

  • Yang H (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yang Y, Tilman D, Lehman C, Trost JJ (2018) Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat Sustain 1(11):686

    Article  Google Scholar 

  • Yu Z, Zhang H (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93(2):199–204. https://doi.org/10.1016/j.biortech.2003.09.016

    Article  CAS  Google Scholar 

  • Yuan X, Shi X, Zhang P, Wei Y, Guo R, Wang L (2011) Anaerobic biohydrogen production from wheat straw stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol 102:9007–9012

    Article  CAS  Google Scholar 

  • Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014. https://doi.org/10.1155/2014/957102

  • Zabed H, Boyce A, Faruq G, Sahu J (2016a) A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production. Ind Crop Prod 94:9–19

    Article  CAS  Google Scholar 

  • Zabed H, Sahu J, Boyce A, Faruq G (2016b) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev. 66:751–774

    Article  CAS  Google Scholar 

  • Zabed H, Boyce AN, Sahu J, Faruq G (2017a) Evaluation of the quality of dried distiller’s grains with solubles for normal and high sugary corn genotypes during dry–grind ethanol production. J Clean Prod 142:4282–4293

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017b) Bioethanol production from renewablemsources: current perspectives and technological progress. Renew Sustain Energy Rev. 71:475–501

    Article  CAS  Google Scholar 

  • Zabed H, Sultana S, Sahu JN, Qi X (2018) An overview on the application of ligninolytic microorganisms and enzymes for pretreatment of lignocellulosic biomass. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer-Nature, Singapore, pp 53–72

    Chapter  Google Scholar 

  • Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu JN (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sustain Energy Rev 105:105–128. https://doi.org/10.1016/j.rser.2019.01.048

    Article  CAS  Google Scholar 

  • Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical- fluid-extrusion cooked sorghum. Ind Crops Prod 23(3):304–310

    Article  CAS  Google Scholar 

  • Zhang X, Ye X, Guo B, Finneran KT, Zilles JL, Morgenroth E (2013) Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Bioresour Technol 147:89–95

    Article  CAS  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresour Technol 199:21–33

    Article  CAS  Google Scholar 

  • Zhao YL, Wang Y, Zhu JY, Ragauskas A, Deng YL (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99(6):1320–1328

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biolog Eng 2009(2):51–68

    Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009a) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724

    Article  CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009b) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    Article  CAS  Google Scholar 

  • Zhu W, Zhu JY, Gleisner R, Pan XJ (2010a) On energy consumption for size-reduction and yield from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol 101(8):2782–2792

    Article  CAS  Google Scholar 

  • Zhu JY, Zhu W, OBryan P, Dien BS, Tian S, Gleisner R, Pan XJ (2010b) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86(5):1355–1365

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010c) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010d) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857

    Article  CAS  Google Scholar 

  • Zwart RW, Boerrigter H, van der Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer− Tropsch products. Energy Fuels 20(5):2192–2197

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Department of Biotechnology, University of Sargodha, Sargodha, Pakistan for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadia, S., Bakhtawar, J., Irfan, M., Shakir, H.A., Khan, M., Ali, S. (2021). Role of Substrate to Improve Biomass to Biofuel Production Technologies. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V.K. (eds) Bioprocessing for Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7070-4_6

Download citation

Publish with us

Policies and ethics