Skip to main content

Inoculation Effects in the Rhizosphere: Diversity and Function

  • Chapter
  • First Online:

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Recent advances in sequencing technologies have shown that there are a few hundred species of microorganisms associated with plants both below and above ground, with the roots being a major staging ground for the strongest functional interactions. Plants interact closely with their endophytes and with microorganisms growing on the root surface and in the rhizosphere. This plant microbiome constitutes a complementary genome in service of the plant and there is growing evidence that it can be manipulated to benefit plant growth and productivity. The most effective form of manipulation has been to use beneficial microorganisms, either singly or in combination to improve the yield by what is generally termed growth promotion or as biocontrol agents that eliminate or reduce the deleterious effects of pathogens. Until recently the ability to study the influence of the added inoculant on the other microorganisms was limited to a few members of cultured species whereas after the explosive development of sequencing technologies and bioinformatic tools there can be a more comprehensive coverage of the effects on the microbiome. This chapter discusses these developments and the emergence of analytical tools to study networks of members of microbiomes as well as mechanisms to manipulate and engineer microbiomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agler TA, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kennen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352

    PubMed  PubMed Central  Google Scholar 

  • Agnolucci M, Palla M, CristanI C, Cavallo N, Giovannetti M, De Angelis M, Gobbetti M, Minervini F (2019) Beneficial plant microorganisms affect the endophytic bacterial communities of Durum wheat roots as detected by different molecular approaches. Front Microbiol 10:2500. https://doi.org/10.3389/fmicb.2019.02500

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo R, Dunlap C, Barnett S, Franco CMM (2019) Decoding wheat endosphere–rhizosphere microbiomes in Rhizoctonia solani–infested soils challenged by streptomyces biocontrol agents. Front Plant Sci 10:1038

    PubMed  PubMed Central  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364

    PubMed  CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    PubMed  CAS  Google Scholar 

  • Barnett S, Zhao S, Ballard R, Franco C (2017) Selection of microbes for control of Rhizoctonia root rot on wheat using a high throughput pathosystem. Biol Control 113:45–57

    Google Scholar 

  • Barnett SJ, Ballard RA, Franco CMM (2019) Field assessment of microbial inoculants to control Rhizoctonia root rot on wheat. Biol Control 132:152–160

    Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 1:25

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219

    PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Bergelson HM (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8(2):e56329

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bokati D, Herrera J, Poudel R (2016) Soil influences colonization of root-associated fungal endophyte communities of maize, wheat, and their progenitors. J Mycol 2016:9

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren E, van Themaat, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    PubMed  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk P (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chandra D, Srivastava R, Gupta VVSR, Franco CMM, Sharma AK (2019a) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65(5):387–403

    PubMed  CAS  Google Scholar 

  • Chandra D, Srivastava R, Gupta VVSR, Franco CMM, Pasricha N, Saifi SK, Tuteja N, Sharma AK (2019b) Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant Soil 441:261–281

    CAS  Google Scholar 

  • Chen X, Pizzatti C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P (2016) Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes. Front Microbiol 7:714

    PubMed  PubMed Central  Google Scholar 

  • Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, Malmstrom RR, Deutschbauer AM, Dangl JL, Visel A (2017) Genome-wide identification of bacterial plant colonization genes. PLoS Biol 15(9):e2002860

    PubMed  PubMed Central  Google Scholar 

  • Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413

    PubMed  PubMed Central  CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(2):208–218

    PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003a) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003b) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69(7):4260–4262

    PubMed  PubMed Central  CAS  Google Scholar 

  • de Boer W, Kowalchuk GA, van Veen JA (2006) ’Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3

    PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    PubMed  CAS  Google Scholar 

  • Donn S, Almario J, Muller D, Moenne-Locoz Y, Gupta VVSR, Kirkegaard J, Richardson A (2014) Rhizosphere microbial communities associated with Rhizoctonia damage at the field and disease patch scale. Appl Soil Ecol 78:37–47

    Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621

    PubMed  Google Scholar 

  • Eberl L (1999) N-Acyl homoserine lactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22(4):493–506

    PubMed  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112(8):E911–E920

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16(2):e2003862

    PubMed  PubMed Central  Google Scholar 

  • Enebe MC, Babalola OO (2019) The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 103(1):9–25

    PubMed  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10(8):538–550

    PubMed  CAS  Google Scholar 

  • Finkel O, Castrillo PG, Gonzalez S, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    PubMed  CAS  Google Scholar 

  • Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F (2017) The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol 8:902

    PubMed  PubMed Central  Google Scholar 

  • Gupta VVSR, Roget DK, Coppi JA (2004) Identification of a previously unrecognized constraint to yield in sequential wheat crops. In: Proceedings of 3rd ASD Symposium, SARDI, Adelaide. pp 13–14

    Google Scholar 

  • Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser J-C, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6(1):14

    PubMed  PubMed Central  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):58

    PubMed  PubMed Central  Google Scholar 

  • Hornung BVH, Zwittink RD, Kuijper EJ (2019) Issues and current standards of controls in microbiome research. FEMS Microbiol Ecol 95(5):45

    Google Scholar 

  • Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9(1):2738

    PubMed  PubMed Central  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    CAS  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE 11:e0164533

    PubMed  PubMed Central  Google Scholar 

  • Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant-Microbe Interact 20(12):1512–1522

    PubMed  CAS  Google Scholar 

  • Kwak M-J, Kong HG, Choi K, Kwon S-K, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ, Park H, Roy N, Kim H, Lee MM, Rubin EM, Lee S-W, Kim JF (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100

    CAS  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689

    PubMed  PubMed Central  CAS  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25(3):217–228

    PubMed  CAS  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    PubMed  CAS  Google Scholar 

  • Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Rangel Alvarez B, Lundberg DS, Lu T-Y, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TG, Grant SR, Doty SL, Ley RE, Zhao B, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T, Dangl JL (2017) Genomic features of bacterial adaptation to plants. Nat Genet 50(1):138–150

    PubMed  PubMed Central  Google Scholar 

  • Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Rangel Alvarez B, Lundberg DS, Lu T-Y, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TG, Grant SR, Doty SL, Ley RE, Zhao B, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T, Dangl JL (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50(1):138–150

    CAS  Google Scholar 

  • Liu D, Sun H, Ma H (2019) Deciphering microbiome related to rusty roots of Panax ginseng and evaluation of antagonists against pathogenic Ilyonectria. Front Microbiol 10:1350

    PubMed  PubMed Central  Google Scholar 

  • Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM (2018) Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 65(2):91–104

    PubMed  Google Scholar 

  • Massart S, Martinez-Medina M, Jijakli MH (2015) Biological control in the microbiome era: challenges and opportunities. Biol Control 89:98–108

    Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci 100(3):1444–1449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172–172

    PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    PubMed  CAS  Google Scholar 

  • Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19(5):502–511

    PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    PubMed  CAS  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitsch A (2017) A New approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11

    PubMed  PubMed Central  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617

    PubMed  CAS  Google Scholar 

  • Nicolaisen M, Justesen A, Knorr K, Wang J, Pinnschmidt HO (2014) Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecol 11:145–153

    Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    PubMed  CAS  Google Scholar 

  • Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    PubMed  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980–989

    PubMed  CAS  Google Scholar 

  • Penton CR, Gupta VVSR, Tiedje JM, Neate SN, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK (2014) Fungal community structure in disease suppressive soils as assessed by 28S LSU gene sequencing. PLoS ONE 9(4):e93893

    PubMed  PubMed Central  Google Scholar 

  • Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LAJ, Hasterok R (2019) Defining the genetic basis of plant-endophytic bacteria interactions. Int J Mol Sci 20(8):1947

    PubMed Central  CAS  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, Alloati J, González-Anta G, Vazquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53(1):403–424

    PubMed  CAS  Google Scholar 

  • Sánchez-Cañizares C, Jorrín B, Poole P, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    PubMed  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8(4):e00764

    PubMed  PubMed Central  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    PubMed  CAS  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28(3):212–217

    PubMed  CAS  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111:585

    PubMed  CAS  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107(11):1284–1297

    PubMed  Google Scholar 

  • Sheoran N, Kumar A, Munjal V, Nadakkakath AV, Eapen SJ (2016) Pseudomonas putida BP25 alters root phenotype and triggers salicylic acid signaling as a feedback loop in regulating endophytic colonization in Arabidopsis thaliana. Physiol Mol Plant Pathol 93:99–111

    CAS  Google Scholar 

  • Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19(8):926–936

    PubMed  Google Scholar 

  • Trujillo M, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS ONE 9(9):e108522

    PubMed  PubMed Central  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tyc O, Wolf A, Garbeva P (2015) The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms. PLoS ONE 10(3):e0119838

    PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378

    PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    PubMed  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155

    PubMed  CAS  Google Scholar 

  • Walker R, Rossall S, Asher MJC (2004) Comparison of application methods to prolong the survival of potential biocontrol bacteria on stored sugar-beet seed. J Appl Microbiol 97(2):293–305

    PubMed  CAS  Google Scholar 

  • Wu L, Wang J, Huang W, Wu H, Chen J, Yang Y, Zhang Z, Lin W (2015) Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Sci Rep 5:15871

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Hamel C, Gan Y, Vujanovic V (2012) Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops. Can J Microbiol 58(12):1368–1377

    PubMed  CAS  Google Scholar 

  • Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, Schillinger WF, Paulitz TC (2013) Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 79(23):7428–7438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang B (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol Biochem 118:178–186

    CAS  Google Scholar 

  • Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80(2):574–585

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. M. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franco, C.M.M. (2021). Inoculation Effects in the Rhizosphere: Diversity and Function. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_15

Download citation

Publish with us

Policies and ethics