Skip to main content

Disease Modeling as a Tool to Assess the Impacts of Climate Variability on Plant Diseases and Health

  • Chapter
  • First Online:

Abstract

Biotic stress is one of the major environmental factors that affect the plant’s growth and life cycle. Plant pathogens are major constraints and severe threats to agricultural production in changing climate scenarios. The effects of climate variability on plant diseases and pathogens have been examined in various plant pathosystems. Climate change is predicted to affect the development of pathogens, their survival, vigor, sporulation, multiplicity, and host susceptibility that ultimately cause changes in the crop diseases. It also affects the inoculum dispersion and pathogenicity. These effects vary depending on pathosystems and geographic locations. Climate change not only affects optimal conditions of infection but also host specificity and infection mechanism in plants. Temperature, light, and humidity are the major factors that control the development and growth of diseases. So, climate change is an emerging challenge that is impacting and driving the plants and pathogens growth, disease development in a pathosystem. This overview is aimed to summarize the previous research, reviews, opinions, and recent trends in studying the effects of climate variability on pathogens and plants health. However, managing and predicting climate change impacts are complicated because of the interaction between the indirect effects and global climate change drivers. Similarly, uncertainty in plant disease development models in changing climate needs the diversification in management strategies. Protection of plants against diseases and pathogens is an essential direction for researchers to make the plants more resistant to pests and diseases. There is a need for further research in different areas under multiple climate-changing factors and scenarios using the disease modeling frameworks such as BIOMA and APSIM-DYMEX.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad S, Hasanuzzaman M (2020) Cotton production and uses. Springer Nature Singapore Pvt. Ltd., Singapore, 641 pp. https://doi.org/10.1007/978-981-15-1472-2

    Book  Google Scholar 

  • Ahmed M (2020) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734:139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed) Agronomic crops, Management practices, vol 2. Springer Singapore, Singapore, pp 31–46. https://doi.org/10.1007/978-981-32-9783-8_3

    Chapter  Google Scholar 

  • Ahmed M, Stockle CO (2016) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer Nature Singapore Pvt. Ltd., Singapore, 437 pp. https://doi.org/10.1007/978-3-319-32059-5

    Book  Google Scholar 

  • Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729:139082. https://doi.org/10.1016/j.scitotenv.2020.139082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves MC, de Carvalho L, Pozza E, Sanches L, Maia JS (2011) Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes. Procedia Environ Sci 6:35–49

    Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Hofte M (2008) Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant-Microbe Interact 21(6):709–719

    CAS  PubMed  Google Scholar 

  • Aurambout J, Finlay KJ, Luck J, Beattie G (2009) A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—a means for assessing biosecurity risk. Ecol Model 220(19):2512–2524

    Google Scholar 

  • Baker R, Sansford C, Jarvis C, Cannon R, MacLeod A, Walters K (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82(1–3):57–71

    Google Scholar 

  • Barnard R, Leadley PW, Lensi R, Barthes L (2005) Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecol 27(3):171–178

    Google Scholar 

  • Barnes AP, Wreford A, Butterworth MH, Semenov MA, Moran D, Evans N, Fitt BD (2010) Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J Agric Sci 148(6):683–694

    Google Scholar 

  • Bassanezi R, Amorim L, Filho AB, Hau B, Berger R (2001) Accounting for photosynthetic efficiency of bean leaves with rust, angular leaf spot and anthracnose to assess crop damage. Plant Pathol 50(4):443–452

    CAS  Google Scholar 

  • Bastiaans L, Rabbinge R, Zadoks J (1994) Understanding and modeling leaf blast effects on crop physiology and yield. In: Rice blast disease. IRRI, Los Baños, pp 357–380

    Google Scholar 

  • Bebber DP (2019) Climate change effects on black Sigatoka disease of banana. Philos Trans R Soc B 374(1775):20180269

    Google Scholar 

  • Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun H-J, Park RF, Cuddy WS, Yonow T (2015) Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 1(10):15132

    PubMed  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58(15–16):4019–4026

    CAS  PubMed  Google Scholar 

  • Boote K, Jones J, Mishoe J, Berger R (1983) Coupling pests to crop growth simulators to predict yield reductions [Mathematical models]. Phytopathology (USA) 73:1581

    Google Scholar 

  • Booth T, Jovanovic T, Old K, Dudzinski M (2000) Climatic mapping to identify high-risk areas for Cylindrocladium quinqueseptatum leaf blight on eucalypts in mainland South East Asia and around the world. Environ Pollut 108(3):365–372

    CAS  PubMed  Google Scholar 

  • Bosch J, Carrascal LM, Duran L, Walker S, Fisher MC (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proc R Soc Lond B Biol Sci 274(1607):253–260

    Google Scholar 

  • Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS (2012) Global change, global trade, and the next wave of plant invasions. Front Ecol Environ 10(1):20–28

    Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. In: Annales des Sciences Forestieres. EDP Sciences (Édition Diffusion Presse Sciences), Ray Ulysse, vol 2–3, pp 347–358

    Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24(1):221–232

    Google Scholar 

  • Bregaglio S, Donatelli M (2015) A set of software components for the simulation of plant airborne diseases. Environ Model Softw 72:426–444

    Google Scholar 

  • Bregaglio S, Donatelli M, Confalonieri R, Acutis M, Orlandini S (2010) An integrated evaluation of thirteen modelling solutions for the generation of hourly values of air relative humidity. Theor Appl Climatol 102(3–4):429–438

    Google Scholar 

  • Bregaglio S, Cappelli G, Donatelli M (2012) Evaluating the suitability of a generic fungal infection model for pest risk assessment studies. Ecol Model 247:58–63

    Google Scholar 

  • Bregaglio S, Donatelli M, Confalonieri R (2013) Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron Sustain Dev 33(4):767–776

    Google Scholar 

  • Bregaglio S, Titone P, Cappelli G, Tamborini L, Mongiano G, Confalonieri R (2016) Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in a temperate climate. Eur J Agron 76:107–117

    Google Scholar 

  • Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189(3):797–805

    PubMed  Google Scholar 

  • Browder L, Eversmeyer M (1986) Interactions of temperature and time with some Puccinia recondita: triticum corresponding gene pairs. Phytopathology (USA) 76:1286

    Google Scholar 

  • Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: european grapevine moth and powdery mildew. Agric Ecosyst Environ 148:89–101

    Google Scholar 

  • Carlsson AS, Chanana NP, Gudu S, Suh MC, Were BAI (2008) Sesame. compendium of transgenic crop plants

    Google Scholar 

  • Carter TR, Saarikko RA, Niemi KJ (1996) Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agric Food Sci 5(3):329–350

    Google Scholar 

  • Chakraborty S (2005) Potential impact of climate change on plant-pathogen interactions. Australas Plant Pathol 34(4):443–448

    Google Scholar 

  • Chakraborty S (2013) Migrate or evolve: options for plant pathogens under climate change. Glob Chang Biol 19(7):1985–2000

    PubMed  Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol 159(3):733–742

    CAS  Google Scholar 

  • Chakraborty S, Murray G, White N (2002) Impact of climate change on important plant diseases in Australia: a report for the Rural Industries Research and Development Corporation

    Google Scholar 

  • Christiansen MN (1982) Breeding plants for less favorable environments

    Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37(1):399–426

    CAS  PubMed  Google Scholar 

  • Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70(2):1051–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Pondeca MS, Manikin GS, DiMego G, Benjamin SG, Parrish DF, Purser RJ, Wu W-S, Horel JD, Myrick DT, Lin Y (2011) The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: current status and development. Weather Forecast 26(5):593–612

    Google Scholar 

  • Desprez-Loustau M-L, Marcais B, Nageleisen L-M, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63(6):597–612

    Google Scholar 

  • Dillehay B, Calvin DD, Roth GW, Hyde J, Kuldau GA, Kratochvil R, Russo J, Voight D (2005) Verification of a European corn borer (Lepidoptera: Crambidae) loss equation in the major corn production region of the northeastern United States. J Econ Entomol 98(1):103–112

    CAS  PubMed  Google Scholar 

  • Donatelli M, Magarey RD, Bregaglio S, Willocquet L, Whish JP, Savary S (2017) Modelling the impacts of pests and diseases on agricultural systems. Agric Syst 155:213–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157(3):417–430

    Google Scholar 

  • Esker PD, Savary S, McRoberts N (2012) Crop loss analysis and global food supply: focusing now on required harvests. CAB Rev 7(052):1–14

    Google Scholar 

  • Foster GN, Blake S, Tones SJ, Barker I, Harrington R (2004) Occurrence of barley yellow dwarf virus in autumn-sown cereal crops in the United Kingdom in relation to field characteristics. Pest Manag Sci Formerly Pestic Sci 60(2):113–125

    CAS  Google Scholar 

  • Francesca S, Simona G, Francesco Nicola T, Andrea R, Vittorio R, Federico S, Cynthia R, Maria Lodovica G (2006) Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob Chang Biol 12(7):1299–1307

    Google Scholar 

  • Frankel S (2007) Climate change’s influence on sudden oak death, PACLIM 2007, Monterey, CA, 13–15 May 2007

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97(1–3):1–20

    CAS  Google Scholar 

  • Garbelotto M, Linzer R, Nicolotti G, Gonthier P (2010) Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biol Invasions 12(4):943–957

    Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    CAS  PubMed  Google Scholar 

  • Garrett KA, Nita M, De Wolf E, Esker PD, Gomez-Montano L, Sparks AH (2015) Plant pathogens as indicators of climate change. In: Climate change, Second edn. Elsevier, Dordrecht, pp 325–338

    Google Scholar 

  • Ghini R, Hamada E, Goncalves RR, Gasparotto L, Pereira JCR (2007) Risk analysis of climatic change on black Sigatoka on banana in Brazil. Fitopatol Bras 32(3):197–204

    Google Scholar 

  • Ghini R, Hamada E, Júnior P, José M, Marengo JA, Gonçalves RRDV (2008) Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesq Agrop Brasileira 43(2):187–194

    Google Scholar 

  • Ghini R, Hamada E, Junior P, Jose M, Goncalves RRDV (2011) Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathol 37(2):85–93

    Google Scholar 

  • Gioria R, Brunelli K, Kobori R (2008) Impacto potencial das mudanças climáticas sobre as doenças de hortaliças: tomate, um estudo de caso. Summa Phytopathologica 34(supl):187–194

    Google Scholar 

  • Gouache D, Roche R, Pieri P, Bancal M-O (2011) Evolution of some pathosystems on wheat and vines. Climate change, agriculture and forests in France: simulations of the impacts on the main species The Green Book of the CLIMATOR project (2007–2010), part C (The crops), section B5 Health:113–126

    Google Scholar 

  • Gramaje D, Baumgartner K, Halleen F, Mostert L, Sosnowski M, Úrbez-Torres J, Armengol J (2016) Fungal trunk diseases: a problem beyond grapevines. Plant Pathol 65(3):355–356

    Google Scholar 

  • Grulke NE (2011) The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol 189(1):8–11

    PubMed  Google Scholar 

  • Hamada E, Ghini R, GONÇALVES RdV (2006) Efeito da mudança climática sobre problemas fitossanitários de plantas: metodologia de elaboração de mapas. Embrapa Meio Ambiente-Artigo em periódico indexado (ALICE)

    Google Scholar 

  • Hibberd J, Whitbread R, Farrar J (1996) Effect of 700 μmol mol− 1CO2 and infection with powdery mildew on the growth and carbon partitioning of barley. New Phytol 134(2):309–315

    Google Scholar 

  • Hirschi M, Stoeckli S, Dubrovsky M, Spirig C, Calanca P, Rotach M, Fischer A, Duffy B, Samietz J (2012) Downscaling climate change scenarios for apple pest and disease modeling in Switzerland. Earth Syst Dynam 3(1):33–47

    Google Scholar 

  • Holzworth DP, Snow V, Janssen S, Athanasiadis IN, Donatelli M, Hoogenboom G, White JW, Thorburn P (2015) Agricultural production systems modelling and software: current status and future prospects. Environ Model Softw 72:276–286

    Google Scholar 

  • Hong SC, Magarey R, Borchert DM, Vargas RI, Souder S (2015) Site-specific temporal and spatial validation of a generic plant pest forecast system with observations of Bactrocera dorsalis (oriental fruit fly). NeoBiota 27:37

    Google Scholar 

  • Hu S, Chapin F III, Firestone M, Field C, Chiariello N (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO 2. Nature 409(6817):188

    CAS  PubMed  Google Scholar 

  • Huber L, Gillespie T (1992) Modeling leaf wetness in relation to plant disease epidemiology. Annu Rev Phytopathol 30(1):553–577

    Google Scholar 

  • Hungate BA, Canadell J, Chapin FS (1996) Plant species mediate changes in soil microbial N in response to elevated CO2. Ecology 77(8):2505–2515

    Google Scholar 

  • Huseynova I, Sultanova N, Mammadov A, Suleymanov S, Aliyev JA (2014) Biotic stress and crop improvement. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 91–120

    Google Scholar 

  • Isard SA, Russo JM, Magarey RD, Golod J, VanKirk JR (2015) Integrated pest information platform for extension and education (iPiPE): progress through sharing. J Integr Pest Manag 6(1):15

    Google Scholar 

  • Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For Pathol 39(2):73–94

    Google Scholar 

  • Junior J, Valadares Júnior R, Cecílio RA, Moraes WB, FXRD V, Alves FR, Paul PA (2008) Worldwide geographical distribution of Black Sigatoka for banana: predictions based on climate change models. Scientia Agricola 65(SPE):40–53

    Google Scholar 

  • Juroszek P, Von Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60(1):100–112

    Google Scholar 

  • Juroszek P, von Tiedemann A (2015) Linking plant disease models to climate change scenarios to project future risks of crop diseases: a review. J Plant Dis Prot 122(1):3–15

    Google Scholar 

  • Kannadan S, Rudgers J (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22(4):706–713

    Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10(10):977–994

    PubMed  Google Scholar 

  • Karnosky D, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson R (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Glob Chang Biol 8(4):329–338

    Google Scholar 

  • Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20(2):167–185

    Google Scholar 

  • Kranz J (1974) The role and scope of mathematical analysis and modeling in epidemiology. In: Epidemics of plant diseases. Springer, Berlin, pp 7–54

    Google Scholar 

  • Kudela V (2009) Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Prot Sci 45(Special Issue):S27–S32

    Google Scholar 

  • Ladanyi M, Horvath L (2010) A review of the potential climate change impact on insect populations- general and agricultural aspects. Appl Ecol Environ Res 8(2):143–152

    Google Scholar 

  • Launay M, Caubel J, Bourgeois G, Huard F, de Cortazar-Atauri IG, Bancal M-O, Brisson N (2014) Climatic indicators for crop infection risk: application to climate change impacts on five major foliar fungal diseases in Northern France. Agric Ecosyst Environ 197:147–158

    Google Scholar 

  • Legler SE, Caffi T, Rossi V (2012) A nonlinear model for temperature-dependent development of Erysiphe necator chasmothecia on grapevine leaves. Plant Pathol 61(1):96–105

    Google Scholar 

  • Lewis E (1977) On the generation and growth of a population. In: Mathematical demography. Springer, Berlin, pp 221–225

    Google Scholar 

  • Luo Y, Tebeest D, Teng P, Fabellar N (1995) Simulation studies on risk analysis of rice leaf blast epidemics associated with global climate change in several Asian countries. J Biogeography 22:673–678

    Google Scholar 

  • Madden L, Ellis M (1988) How to develop plant disease forecasters. In: Experimental techniques in plant disease epidemiology. Springer, Berlin, pp 191–208

    Google Scholar 

  • Madden LV, Hughes G, Van Den Bosch F (2007) The study of plant disease epidemics

    Google Scholar 

  • Magarey R, Seem R, Russo J, Zack J, Waight K, Travis J, Oudemans P (2001) Site-specific weather information without on-site sensors. Plant Dis 85(12):1216–1226

    CAS  PubMed  Google Scholar 

  • Magarey R, Travis J, Russo J, Seem R, Magarey P (2002) Decision support systems: quenching the thirst. Plant Dis 86(1):4–14

    CAS  PubMed  Google Scholar 

  • Magarey R, Sutton T, Thayer C (2005) A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95(1):92–100

    CAS  PubMed  Google Scholar 

  • Magarey R, Russo J, Seem R (2006) Simulation of surface wetness with a water budget and energy balance approach. Agric For Meteorol 139(3–4):373–381

    Google Scholar 

  • Magarey R, Fowler G, Borchert D, Sutton T, Colunga-Garcia M, Simpson J (2007) NAPPFAST: an internet system for the weather-based mapping of plant pathogens. Plant Dis 91(4):336–345

    CAS  PubMed  Google Scholar 

  • Magarey RD, Borchert D, Engle J, Colunga-Garcia M, Koch FH, Yemshanov D (2011) Risk maps for targeting exotic plant pest detection programs in the United States. EPPO Bull 41(1):46–56

    Google Scholar 

  • Magarey RD, Borchert DM, Fowler GA, Hong SC, Venette R (2015) The NCSU/APHIS plant pest forecasting system (NAPPFAST). Pest risk modelling and mapping for invasive alien species. CABI, Wallingford, pp 82–96

    Google Scholar 

  • Manici L, Bregaglio S, Fumagalli D, Donatelli M (2014) Modelling soil borne fungal pathogens of arable crops under climate change. Int J Biometeorol 58(10):2071–2083

    CAS  PubMed  Google Scholar 

  • Melloy P, Aitken E, Luck J, Chakraborty S, Obanor F (2014) The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages. Eur J Plant Pathol 140(1):19–37

    CAS  Google Scholar 

  • Mikkelsen BL, Jørgensen RB, Lyngkjær MF (2015) Complex interplay of future climate levels of CO 2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol 64(2):319–327

    CAS  Google Scholar 

  • Moraes WB, Peixoto L, Jesus Junior W, Moraes W, Cecilio R (2011) Impacts of climate change on the risk on occurrence of the southern corn rust of the maize in Brasil. Enciclopedia Biosfera 7:1–12

    Google Scholar 

  • Moraes BW, de Jesus Junior CW, de Azevedo Peixoto L, Moraes WB, Coser SM, Cecílio RA (2012a) Impact of climate change on the phoma leaf spot of coffee in Brazil. Interciencia 37:272–278

    Google Scholar 

  • Moraes BW, Júnior J, Peixoto LA, Moraes WB, Furtado EL, LGD S, Cecílio RA, Alves FR (2012b) An analysis of the risk of cocoa moniliasis occurrence in Brazil as the result of climate change. Summa Phytopathol 38(1):30–35

    Google Scholar 

  • Nancarrow N, Constable FE, Finlay KJ, Freeman AJ, Rodoni BC, Trebicki P, Vassiliadis S, Yen AL, Luck JE (2014) The effect of elevated temperature on barley yellow dwarf virus-PAV in wheat. Virus Res 186:97–103

    CAS  PubMed  Google Scholar 

  • Newton A, Young I (1996) Temporary partial breakdown of Mlo-resistance in spring barley by the sudden relief of soil water stress. Plant Pathol 45(5):973–977

    Google Scholar 

  • Nutter FW Jr (1989) Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathology 79(9):958–963

    Google Scholar 

  • Otten W, Bailey DJ, Gilligan CA (2004) Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol 163(1):125–132

    Google Scholar 

  • Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, Lannou C (2009) Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol 58(3):409–424

    Google Scholar 

  • Patt A, Suarez P, Gwata C (2005) Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proc Natl Acad Sci 102(35):12623–12628

    CAS  PubMed  Google Scholar 

  • Pavan W, Fernandes JMC (2009) Uso de orientação a objetos no desenvolvimento de modelos de simulação de doenças de plantas genéricos. Revista Brasileira de Agroinformática 9(1):12–27

    Google Scholar 

  • Pavan W, Fraisse C, Peres N (2011) Development of a web-based disease forecasting system for strawberries. Comput Electron Agric 75(1):169–175

    Google Scholar 

  • Pennypacker B, Leath K, Hill R Jr (1991) Impact of drought stress on the expression of resistance to Verticillium albo-atrum in alfalfa. Phytopathology (USA) 81(9):1014

    Google Scholar 

  • Perkins LB, Leger EA, Nowak RS (2011) Invasion triangle: an organizational framework for species invasion. Ecol Evol 1(4):610–625

    PubMed  PubMed Central  Google Scholar 

  • Pfender W, Gent D, Mahaffee W (2012) Sensitivity of disease management decision aids to temperature input errors associated with sampling interval and out-of-canopy sensor placement. Plant Dis 96(5):726–736

    CAS  PubMed  Google Scholar 

  • Plazek A, Hura K, Rapacz M, Zur I (2001) The influence of ozone fumigation on metabolic efficiency and plant resistance to fungal pathogens. J Appl Bot Food Qual 75:8–13

    CAS  Google Scholar 

  • Plessl M, Heller W, Payer HD, Elstner E, Habermeyer J, Heiser I (2005) Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biol 7(6):694–705

    CAS  PubMed  Google Scholar 

  • Pritchard S, Rogers H, Prior SA, Peterson C (1999) Elevated CO2 and plant structure: a review. Glob Chang Biol 5(7):807–837

    Google Scholar 

  • Prospero S, Grünwald N, Winton L, Hansen E (2009) Migration patterns of the emerging plant pathogen Phytophthora ramorum on the west coast of the United States of America. Phytopathology 99(6):739–749

    CAS  PubMed  Google Scholar 

  • Rabbinge R (1993) The ecological background of food production. In: Ciba foundation symposium. Wiley Online Library, pp 2–2

    Google Scholar 

  • Rakotonindraina T, Chauvin J-E, Pellé R, Faivre R, Chatot C, Savary S, Aubertot J-N (2012) Modeling of yield losses caused by potato late blight on eight cultivars with different levels of resistance to Phytophthora infestans. Plant Dis 96(7):935–942

    PubMed  Google Scholar 

  • Regniere J (2011) Invasive species, climate change and forest health. In: Forests in development: a vital balance. Springer, Dordrecht, pp 27–37

    Google Scholar 

  • Régnière J, Powell J, Bentz B, Nealis V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58(5):634–647

    PubMed  Google Scholar 

  • Richerzhagen D, Racca P, Zeuner T, Kuhn C, Falke K, Kleinhenz B, Hau B (2011) Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. J Plant Dis Prot 118(5):168–177

    Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    CAS  PubMed  Google Scholar 

  • Robert C, Bancal M-O, Lannou C, Ney B (2005) Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. J Exp Bot 57(1):225–234

    PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404

    PubMed  Google Scholar 

  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S (2013) The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182

    Google Scholar 

  • Rossi V, Giosuè S, Caffi T (2009) Modelling the dynamics of infections caused by sexual and asexual spores during Plasmopara viticola epidemics. J Plant Pathol 91:615–627

    Google Scholar 

  • Rouse D (1988) Use of crop growth-models to predict the effects of disease. Annu Rev Phytopathol 26(1):183–201

    Google Scholar 

  • Runion G, Curl E, Rogers H, Backman P, Rodriguez-Kabana R, Helms B (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70(1–4):117–130

    Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, H-y C, Iredell M (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Google Scholar 

  • Salam MU, MacLeod WJ, Salam KP, Maling T, Barbetti MJ (2011) Impact of climate change in relation to ascochyta blight on field pea in Western Australia. Australas Plant Pathol 40(4):397

    Google Scholar 

  • Salinari F, Giosuè S, Rossi V, Tubiello FN, Rosenzweig C, Gullino ML (2007) Downy mildew outbreaks on grapevine under climate change: elaboration and application of an empirical-statistical model. EPPO Bull 37(2):317–326

    Google Scholar 

  • Sandermann JH (2000) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108(3):327–332

    CAS  PubMed  Google Scholar 

  • Savary S, Willocquet L (2014) Simulation modeling in botanical epidemiology and crop loss analysis. Plant Health Instruct. https://doi.org/10.1094/PHI-A-2014-0314-01

  • Savary S, Teng PS, Willocquet L, Nutter FW Jr (2006) Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol 44:89–112

    CAS  PubMed  Google Scholar 

  • Scherm H (2000) Simulating uncertainty in climate–pest models with fuzzy numbers. Environ Pollut 108(3):373–379

    CAS  PubMed  Google Scholar 

  • Scherm H (2004) Climate change: can we predict the impacts on plant pathology and pest management? Can J Plant Pathol 26(3):267–273

    Google Scholar 

  • Seherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32(2):157–165

    Google Scholar 

  • Shabani F, Kumar L (2013) Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS One 8(12):e83404

    PubMed  PubMed Central  Google Scholar 

  • Sparks AH, Forbes GA, Hijmans RJ, Garrett KA (2014) Climate change may have limited effect on global risk of potato late blight. Glob Chang Biol 20(12):3621–3631

    PubMed  Google Scholar 

  • Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12(10):1599–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stern N (2008) The economics of climate change. Am Econ Rev 98(2):1–37

    Google Scholar 

  • Stone JK, Coop LB, Manter DK (2008) Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Can J Plant Pathol 30(2):169–176

    Google Scholar 

  • Sturrock R, Frankel S, Brown A, Hennon P, Kliejunas J, Lewis K, Worrall J, Woods A (2011) Climate change and forest diseases. Plant Pathol 60(1):133–149

    Google Scholar 

  • Sutherst R, Maywald G, Kriticos D (2007) CLIMEX version 3: user’s guide

    Google Scholar 

  • Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP (2011) Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip Rev Clim Chang 2(2):220–237

    Google Scholar 

  • Swiecki TJ, Bernhardt EA (2016) Sudden oak death in California. In: Insects and diseases of mediterranean forest systems. Springer, Cham, pp 731–756

    Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J (2007) The mysterious demise of an ice-age relic: exposing the cause of yellow-cedar decline. Science findings 93 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station 5, p 93

    Google Scholar 

  • Thompson BG, Drake BG (1994) Insects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field. Plant Cell Environ 17(10):1161–1167

    Google Scholar 

  • Tiedemann A, Firsching K (2000) Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ Pollut 108(3):357–363

    CAS  Google Scholar 

  • Uchôa CN, Pozza EA, Albuquerque KS, Moraes WS (2012) Relationship between temperature and leaf wetness in Black Sigatoka monocycle. Summa Phytopathol 38(2):144–147

    Google Scholar 

  • Van der Plank JE (2013) Plant diseases: epidemics and control. Elsevier, New York

    Google Scholar 

  • Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH (2009) Widespread increase of tree mortality rates in the western United States. Science 323(5913):521–524

    PubMed  Google Scholar 

  • Vary ZM, Ewen McElwain CJ, Doohan MF (2015) The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob Chang Biol 21(7):2661–2669

    PubMed  Google Scholar 

  • Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen S, Sims J, Martins VF, Swerbilow J, Romero M, Alborn HT (2014) Effects of elevated [CO2] on maize defence against mycotoxigenic F usarium verticillioides. Plant Cell Environ 37(12):2691–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RH, Worner SP, Gómez Raboteaux NN, McKenney DW, Dobesberger EJ, Yemshanov D (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60(5):349–362

    Google Scholar 

  • Welch S, Croft B, Brunner J, Michels M (1978) PETE: an extension phenology modeling system for management of multi-species pest complex. Environ Entomol 7(4):487–494

    Google Scholar 

  • Whish JP, Herrmann NI, White NA, Moore AD, Kriticos DJ (2015) Integrating pest population models with biophysical crop models to better represent the farming system. Environ Model Softw 72:418–425

    Google Scholar 

  • Willocquet L, Savary S, Fernandez L, Elazegui F, Teng P (2000) Development and evaluation of a multiple-pest, production situation specific model to simulate yield losses of rice in tropical Asia. Ecol Model 131(2–3):133–159

    Google Scholar 

  • Willocquet L, Savary S, Fernandez L, Elazegui F, Castilla N, Zhu D, Tang Q, Huang S, Lin X, Singh H (2002) Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia. Ecol Model 153(3):247–268

    Google Scholar 

  • Willocquet L, Elazegui FA, Castilla N, Fernandez L, Fischer KS, Peng S, Teng PS, Srivastava R, Singh H, Zhu D (2004) Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology 94(7):672–682

    PubMed  Google Scholar 

  • Willocquet L, Aubertot J, Lebard S, Robert C, Lannou C, Savary S (2008) Simulating multiple pest damage in varying winter wheat production situations. Field Crop Res 107(1):12–28

    Google Scholar 

  • Wong P, Mead J, Croff M (2002) Effect of temperature, moisture, soil type and Trichoderma species on the. Australas Plant Pathol 31(3):253–257

    Google Scholar 

  • Yonow T, Zalucki M, Sutherst R, Dominiak B, Maywald G, Maelzer D, Kriticos D (2004) Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: a cohort-based approach incorporating the effects of weather. Ecol Model 173(1):9–30

    Google Scholar 

  • Zadoks J (1971) Systems analysis and the dynamics of epidemics. Phytopathology

    Google Scholar 

  • Zadoks JC, Schein RD (1979) Epidemiology and plant disease management. Epidemiology and plant disease management

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehmood, M.Z. et al. (2020). Disease Modeling as a Tool to Assess the Impacts of Climate Variability on Plant Diseases and Health. In: Ahmed, M. (eds) Systems Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_12

Download citation

Publish with us

Policies and ethics