Skip to main content

Advances and Challenges in Sugarcane Biofuel Development

  • Chapter
  • First Online:
Book cover Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

Biofuel produced from the plant biomass shows greater alternative source of renewable energy and better than the fossil fuels in reducing the greenhouse gas emission from the burning of fossil fuels. Sugarcane is one of the best candidates for biofuel production which has been used successfully to produce bioethanol extensively in Brazil and also in other countries worldwide. Sugarcane is a perennial monocot with C4 photosynthesis, having a fast growth rate without any serious maintenance and can be harvested four to five times by multiplying using the ratoons. Sugarcane is one of the primary crops as a source for both food and bioenergy, with Brazil, India, and China contributing more than 60% of the world’s total production. The diminishing resources of fossil fuel coupled with augmented research interest for an environmentally sustainable and renewable source of energy in the form of sugarcane. Industrial levels of biofuel production have been achieved in Brazil and the USA, however more concerted efforts needs to be directed towards deployment of second-generation biofuel production by utilizing lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Akaracharanya A, Kesornsit J, Leepipatpiboon N, Srinorakutara T, Kitpreechavanich V, Tolieng V (2011) Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol. 61:431–436

    Article  CAS  Google Scholar 

  • Allen CJ, Mackay MJ, Aylward JH, Campbell JA (1997) New technologies for sugar milling and by-product modification. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 267–285

    Google Scholar 

  • Allsopp P, Samson P, Chandler K (2000) Pest management. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experimental Stations, Indooroopilly, pp 291–337

    Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, De La Riva GA, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed. 3:247–255

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Téllez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213–222

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res. 8(5):349–360

    Article  CAS  Google Scholar 

  • Arruda P (2012) Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol. 23:315–322

    Article  CAS  PubMed  Google Scholar 

  • Balat M (2010) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conv Manag. 52(2):858–875

    Article  CAS  Google Scholar 

  • Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol. 4:246

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi D, Chu D, Zhu P, Lu C, Fan C, Zhang J, Bao J (2011) Utilization of dry distiller’s grain and solubles as nutrient supplement in the simultaneous saccharification and ethanol fermentation at high solids loading of corn stover. Biotechnol Lett. 33:273–276

    Article  CAS  PubMed  Google Scholar 

  • Bottcher A, Cesarino I, Santos AB, Vicentini R, Mayer JLS, Vanholme R, Morreel K, Goeminne G, Moura JCMS, Nobile PM (2013) Lignification in sugarcane: biochemical characterization, gene discovery and expression analysis in two genotypes contrasting for lignin content. Plant Physiol. 163(4):1539–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15(3):550–583

    Article  CAS  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 1(1):1–17

    Article  CAS  Google Scholar 

  • Buckeridge MS, Santos WD, Souza AP (2010) As rotaspara o etanolcelulósico no Brasil. In: Cortez LAB (ed) Bioetanol de cana-de-açúcar: P & D paraprodutividade e sustentabilidade. Blucher, São Paulo, pp 365–380

    Google Scholar 

  • Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FCO, Lachance MA, Rosa CA (2009) Spathaspora arborariae sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res. 9:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol. 60:165–182

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LC, Bueno RCOF, Carvalho MM, Favoreto AL, Godoy AF (2013) Cane sugar and alcohol fuel: history, bioenergy, sustainability and security energetic. Enciclopédia Biosfera 9(16):530–542

    Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2013) Commentary: why don’t plant leaves get fat? Plant Sci. 207:128–134

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design, and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Cho R (2011) Is biomass really renewable? Earth Institute, Columbia University. Available at: https://blogs.ei.columbia.edu/2011/08/18/is-biomass-really-renewable/. Accessed 20 Nov 2019

  • Choi GW, Um HJ, Kang HW, Kim Y, Kim M, Kim YH (2010a) Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus. Biomass Bioenergy. 34:1232–1242

    Article  CAS  Google Scholar 

  • Choi GW, Um HJ, Kim Y, Kang HW, Kim M, Chung BW, Kim YH (2010b) Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass Bioenergy. 34:1223–1231

    Article  CAS  Google Scholar 

  • Chu D, Zhang J, Bao J (2012) Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenergy Res. 5:1020–1026

    Article  CAS  Google Scholar 

  • Dale J (2007) Cellulosic ethanol: huge potential but challenging. Cent Trop Crop Biocommodities Qld Univ Technol Aust 35:111

    Google Scholar 

  • Davis SC, Boddey RM, Alves BJ, Cowie AL, George BH, Ogle SM, Smith P, van Noordwijk M, van Wijk MT (2013) Management swing potential for bioenergy crops. GCB Bioenergy. 5(6):623–638

    Article  Google Scholar 

  • de Jesus Pereira E, Panek AD, Eleutherio ECA (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperones. 8:120

    Article  PubMed Central  Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • De Souza AP, Kamei CLA, Torres AF, Pattathil S, Hahn MG, Trindade LM, Buckeridge MS (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot. 66:4351–4365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deindoerfer FH, Humphrey AE (1959) Design of multistage systems for simple fermentation processes. Ind Eng Chem. 51(7):809–812

    Article  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Pavanello LG, Cunha MP, Jesus CDF, Maciel Filho R, Bonomi A (2013) Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl Energ. 109:72–78

    Article  CAS  Google Scholar 

  • Domingues L, Lima N, Teixeira JA (2000) Contamination of a high-cell-density continuous bioreactor. Biotechnol Bioeng. 68(5):584–587

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54:593–607

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Yuan L (2010) Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. Plant Biotechnol J. 8:308–315

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2019) Food and Agriculture Organization Agricultural Statistics. http://faostat.fao.org. Accessed 9 Nov 2019

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci. 108:3803–3808

    Article  CAS  PubMed  Google Scholar 

  • Garcia Tavares R, Lakshmanan P, Peiter E, O’Connell A, Caldana C, Vicentini R, Soares JS, Menossi M (2018) ScGAI is a key regulator of culm development in sugarcane. J Exp Bot. 69:3823–3837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez-Pastor RM, Perez-Torrado R, Garre E, Matallana E (2011) Recent advances in yeast biomass production. In: Matovic D (ed) Biomass - detection, production and usage. InTech Publishing, Rijeka (Croatia), pp 201–222

    Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Bespalhok Filho JC, Vieira LGE (2014) Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant. 36:2309–2319

    Article  CAS  Google Scholar 

  • Halling P, Simms-Borre P (2008) Overview of lignocellulosic feedstock conversion into ethanol-focus on sugarcane bagasse. Int Sugar J. 110:191

    CAS  Google Scholar 

  • Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol. 42:1–20

    Article  CAS  PubMed  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J. 8:244–262

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J. 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res. 123:285–295

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pre-treatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol. 3:1–15

    Article  Google Scholar 

  • Huang H, Long S, Singh V (2015) Ultra-oil producing sugarcane and sweet sorghum. AOCS Inform. 26:278–282

    Google Scholar 

  • Inganäs O, Sundström V (2016) Solar energy for electricity and fuels. Ambio. 45:15–23

    Article  CAS  Google Scholar 

  • Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crop Res. 89:107–122

    Article  Google Scholar 

  • Jeswiet J (1929) The development of selection and breeding of the sugarcane in Java. In: Proceedings of the 3rd Congress of the International Society of Sugar Cane Technologists, Soerabaia, pp 44–57

    Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J. 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Jutakanoke R, Leepipatpiboon N, Tolieng V, Kitpreechavanich V, Srinorakutara T, Akaracharanya A (2012) Sugarcane leaves: Pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 39:283–289

    Article  CAS  Google Scholar 

  • Karagoz P, Ozkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol. 158:286–293

    Article  CAS  PubMed  Google Scholar 

  • Khan MT, Khan IA, Yasmeen S (2019) Genetically modified sugarcane for biofuels production: Status and perspectives of conventional transgenic approaches, RNA interference, and genome editing for improving sugarcane for biofuels. In: Khan MT, Khan IA (eds) Sugarcane biofuels status, potential, and prospects of the sweet crop to fuel the world. Springer, Switzerland, pp 67–96

    Google Scholar 

  • Kim JH, Ryu J, Huh IY, Hong S-K, Kang HA, Chang YK (2014) Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioproc Biosyst Eng. 37:1871–1878

    Article  CAS  Google Scholar 

  • Kumar T, Khan MR, Abbas Z, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol. 56:199–209

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study. Elsevier, Amsterdam

    Google Scholar 

  • Laluce C, Tognolli JO, Oliveira KF, Souza CS, Morais MR (2009) Optimization of temperature, sugar concentration and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. App Microbiol Biotechnol. 83(4):627–637

    Article  CAS  Google Scholar 

  • Leite RCC, Leal MRLV (2007) O biocombustível no Brasil. Novos Estudos. 78(1):15–21

    Article  Google Scholar 

  • Li Y, Gao K, Tian S, Zhang S, Yang X (2011) Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. Bioresour Technol. 102:10548–10552

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sarkanyet N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic, and mixotrophic growth conditions. Biotechnol Lett. 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Lima MAP, Natalense APP (2010) Necessidade de pesquisabásicaparacana e etanol. In: Cortez LAB (ed) Bioetanol de cana-de-açúcar: P&D paraprodutividade e sustentabilidade. Edgard Blücher, São Paulo

    Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster rubisco with potential to increase photosynthesis in crops. Nature. 513:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lina BAR, Jonker D, Kozianowski G (2002) Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food Chem Toxicol. 40:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Lorliam W, Akaracharanya A, Suzuki M, Ohkuma M, Tanasupawat S (2013) Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microb Environ. 28(3):354–360

    Article  Google Scholar 

  • Loureiro ME, Barbosa MHP, Lopes FJF, Silvério FO (2011) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Routes to cellulosic ethanol. Springer, New York, pp 199–239

    Chapter  Google Scholar 

  • Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different sub cellular compartments affects sucrose accumulation in sugar cane cells. Funct Plant Biol. 27:1021–1030

    Article  CAS  Google Scholar 

  • Mackintosh D (2000) Sugar milling. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experiment Stations, Indooroopilly, pp 369–377

    Google Scholar 

  • Maldonado A, Melgar M, Lamport P (2010) Towards much more efficient biofuel crops - can sugarcane pave the way? GM Crops. 1:181–198

    Article  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Martiniano SE, Chandel AK, Soares LCSR, Pagnocca FC, Silva SS (2013) Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3 Biotech. 3(5):345–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Matos ITSR, Cassa-Barbosa LA, Galvão RSM, Nunes-Silva CG, Astolfi-Filho S (2014) Isolation, taxonomic identification and investigation of the biotechnological potential of wild-type Meyerozyma guilliermondii associated with Amazonian termites able to ferment d-xylose. Biosci J. 30(1):260–266

    Google Scholar 

  • Matsuoka S, Ferro J, Arruda P (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant. 45:372–381

    Article  Google Scholar 

  • Maxon WD, Johnson MJ (1953) Aeration studies on propagation of baker’s yeasts. Ind Eng Chem 45(11):2554–2560

    Article  CAS  Google Scholar 

  • Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 10:52–61

    PubMed  PubMed Central  Google Scholar 

  • Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance MA, Rosa CA (2013) D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol. 60:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energ. 92:763–768

    Article  CAS  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol. 11:252–257

    Article  CAS  PubMed  Google Scholar 

  • Ndimande S (2014) Increasing cellulosic biomass in sugarcane. Dissertation, Stellenbosch University

    Google Scholar 

  • Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res. 110:1232–1241

    Article  PubMed  Google Scholar 

  • Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocelluloses conversion to fermentable sugars. Bioresour Technol. 101(19):7432–7438

    Article  CAS  PubMed  Google Scholar 

  • Nikolić S, Mojović L, Pejin D, Rakin M, Vukašinović M (2010) Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenergy 34:1449–1456

    Article  CAS  Google Scholar 

  • Nitiyon S, Boonmak C, Am-In S, Jindamorakot S, Kawasaki H, Yongmanitchai W, Limton S (2011) Candida saraburiensis sp. nov. and Candida prachuapensis sp. nov., xylose-utilizing yeast species isolated in Thailand. Int J Syst Evol Microbiol. 61:462–468

    Article  CAS  PubMed  Google Scholar 

  • Ogeda TL, Petri DFS (2010) Biomass enzymatic hydrolysis. Quim Nova. 33:1549–1558

    Article  CAS  Google Scholar 

  • Ohlrogge J, Chapman K (2011) The seeds of green energy: expanding the contribution of plant oils as biofuels. Biochemist (London). 33:34–38

    Article  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol. 74:69–80

    Article  CAS  Google Scholar 

  • Papes F, Gerhardt IR, Arruda P (2015) Cambium/xylem-preferred promoters and uses thereof. U.S. Patent 9,029,637, 12 May 2015

    Google Scholar 

  • Park JM, Oh BR, Seo JW, Hong WK, Yu A, Sohn JH, Kim CH (2013) Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Appl Biochem Biotechnol. 170(8):1807–1814

    Article  CAS  PubMed  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta. 238:627–642

    Article  CAS  PubMed  Google Scholar 

  • Piacente FJ, Silva VC, Biaggi DE (2015) Second-generation ethanol from sugarcane: prospecting patent study. Espacios. 36(1):16–18

    Google Scholar 

  • Prompt AH (2012) Análise da fermentação de glucose e xiloseporleveduras Spathasporaisoladas de madeira emdecomposição. Dissertation, Universidade Federal de Santa Catarina

    Google Scholar 

  • Reis RR, da Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior AÔ, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, de Carvalho JFC, de Sousa CAÔF, Nepomuceno AL, Kobayashi AK, Molinari HB (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci. 221–222:59–68

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Chen L, Niu Q, Hui F (2014) Description of Scheffersomyces henanensis sp. nov., a new D-xylose-fermenting yeast species isolated from rotten wood. PLoS One 9(3):e92315

    Google Scholar 

  • Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6:e16416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos FA, Queiróz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST (2012) Potential of sugarcane straw for ethanol production. Quim Nova 35(5):1004–1010

    Article  CAS  Google Scholar 

  • Saravanan S, Kumar KK, Raveendran M, Sudhakar D, Arul L, Kokiladevi E, Raguchander T, Mani S, Balasubramanian P (2018) Genetic engineering of sugarcane for drought and salt tolerant transgenic plants expressing the BcZAT12 gene. Int J Curr Microbiol Appl Sci. 7:1594–1613

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Banerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ. 37(1):19–27

    Article  CAS  Google Scholar 

  • Sathesh-Prabu C, Murugesan AG (2011) Potential utilization of sorghum field waste for fuel ethanol production employing Pachysolen tannophilus and Saccharomyces cerevisiae. Bioresour Technol. 102:2788–2792

    Article  CAS  PubMed  Google Scholar 

  • Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82:532–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Guo JS, Chen YP, Zhang HD, Zheng XX, Zhang XM, Bai FW (2012) Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium. J Biotechnol. 160:229–235

    Article  CAS  PubMed  Google Scholar 

  • Shih PM, Liang Y, Loqué D (2016) Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. Plant J. 87:103–117

    Article  PubMed  Google Scholar 

  • Singh A, Bajar S, Bishnoi NR (2014) Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel. 116:699–702

    Article  CAS  Google Scholar 

  • Solomon BD, Bailis R (2014) Sustainable development of biofuel in Latin American and the Caribbean. Springer, New York

    Book  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science. 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2003) Media for industrial fermentations. In: Principles of fermentation technology. Butterworth-Heinemann Elsevier Publishing, Oxford, pp 93–122

    Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol. 17:315–319

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D, Verma DK, Malik K, Mohapatra B, Yulianto R (2017) Sugarcane as a potential biofuel crop. In: Mohan C (ed) Sugarcane biotechnology: challenges and prospects. Springer International Publishing, Cham, pp 123–137

    Chapter  Google Scholar 

  • Tesfaw A, Assefa F (2014) Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Sch Res Not 2014:1–11

    Article  Google Scholar 

  • Tian S, Li Y, Wang Z, Yang X (2013) Evaluation of simultaneous Saccharification and ethanol fermentation of undetoxified steam-exploded corn stover by Saccharomyces cerevisiae Y5. Bio Energy Res. 6:1142–1146

    CAS  Google Scholar 

  • Van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci. 4:107

    PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, El Tahchy A, Liu Q, Zhou X, Shrestha P, Divi UK, Ral J, Mansour MP, Nichols PD, James CN (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J. 12:231–239

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol. 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheye W (2010) Growth and production of sugarcane. In: Soils, plant growth and production volume II in Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, vol 2. EOLSS Publishers, Paris. Available at: www.eolss.net/sample-chapters/c10/e1-05a-22-00.pdf. Accessed 20 Nov 2019

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J. 8(3):263–276

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell. 7:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J. 5:109–117

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13:421–429

    Article  CAS  PubMed  Google Scholar 

  • Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F (2016) Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J. 14:661–669

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang B, Feng C, Chen R, Luo J, Cai W, Liu F (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol. 48:453–459

    Article  CAS  Google Scholar 

  • Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strains constructed through a modified genome shuffling method. Biotechnol Biofuels. 5:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z (2009) Batch fermentation and fermenter design. Nottingham University Press Publishing, Nottingham, pp 257–299

    Google Scholar 

  • Zhang Z, O’Hara IM, Doherty WOS (2013) Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Green Chem. 15:431–438

    Article  CAS  Google Scholar 

  • Zhang ZY, O’Hara IM, Doherty WUS (2012) Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions. Bioresour Technol. 120:149–156

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xia L (2010) Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Process Technol 91:1807–1811

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Tiwari, V., Singh, P., Bishi, S.K., Gupta, C.K., Mishra, G.P. (2020). Advances and Challenges in Sugarcane Biofuel Development. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_11

Download citation

Publish with us

Policies and ethics