Skip to main content

The Role of In Vivo Screening Studies in Assessing Manufactured Nanomaterials

  • Chapter
  • First Online:

Abstract

Information on possible toxic effects of nanomaterials is essential to ensure occupational and consumer safety. As regards human exposure to nanomaterials, inhalation is recognized as an exposure route of potential concern, especially in the occupational context, but also for consumers. Generally, comprehensive regulatory toxicity testing for the hazard and risk assessment of an inhalable chemical encompasses a dose range finding inhalation study using rats followed by a rat 28-day and 90-day inhalation toxicity study (OECD TG 412 and 413). However, performing such inhalation toxicity tests is time-consuming, cost-intensive, and can require up to 160 animals per study. Given the increasing number of products containing nanomaterials entering the market and the multitude of different variants of the same nanomaterial, the fulfillment of all information requirements for every single variant of a given nanomaterial is impractical and undesirable for economic reasons, and it further stands in contradiction to the internationally accepted 3Rs principle to replace, reduce, and refine animal testing. On the other hand, in vivo inhalation toxicity tests cannot yet be replaced by in vitro methods. Taking into account the specific purpose of the investigation, both the short-term inhalation study (STIS) and the intratracheal instillation (IT) study are suitable in vivo screening methods that allow identifying if nanomaterials that reach the lung elicit signs of inflammation. These screening methods allow reducing and refining animal testing as compared to the 28-day and 90-day inhalation toxicity studies. IT studies are useful to obtain initial information on pulmonary effects elicited by nanomaterials, e.g., during product development and as an initial step for hazard identification, but they are less suitable in providing information that is directly relevant for quantitative safety assessments. By comparison, the rat STIS can be used as a range finding study for a subsequent longer-term inhalation toxicity study and can be embedded in a tiered grouping and testing strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stark WJ, et al. Industrial applications of nanoparticles. Chem Soc Rev. 2015;44(16):5793–805.

    Article  CAS  PubMed  Google Scholar 

  2. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73:137–50.

    Article  CAS  PubMed  Google Scholar 

  3. ISO. International Standardization Organization Technical Standard: Nanotechnologies—Terminology and definitions for nanoobjects—nanoparticle, nanofibre, nanoplate. ISO/TS 27687:2008, 2008. Available at http://www.iso.org/iso/catalogue_detail?csnumber=44278

  4. ISO. International Standardization Organization Technical Standard: Nanotechnologies—Vocabulary—Part 1: Core terms. ISO/TS 80004-1:2010, 2010. Available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=51240

  5. Commission. Commission recommendation on the definition of nanomaterial. OJ L 275/38, 18 Oct 2011

    Google Scholar 

  6. ECHA. European Chemicals Agency. How to prepare registration dossiers that cover nanoforms: best practices. Version 1.0, May 2017, ECHA-17-G-13-EN, 21 pp

    Google Scholar 

  7. Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol. 2013;24:724–34.

    Article  CAS  PubMed  Google Scholar 

  8. Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays with in vivo inhalation or instillation studies. Nanomedicine. 2014;9:2557–85.

    Article  CAS  PubMed  Google Scholar 

  9. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Moreno-Horn M, Gebel T. Granular biodurable nanomaterials: no convincing evidence for systemic toxicity. Crit Rev Toxicol. 2014;44(10):849–75.

    Article  CAS  PubMed  Google Scholar 

  12. Nel AE, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 2013;46:607–21.

    Article  CAS  PubMed  Google Scholar 

  13. Nel AE, Parak WJ, Chan WC, Xia T, Hersam MC, Brinker CJ, Zink JI, Pinkerton KE, Baer DR, Weiss PS. Where are we heading in nanotechnology environmental health and safety and materials characterization? ACS Nano. 2015;9:5627–30.

    Article  CAS  PubMed  Google Scholar 

  14. SCENIHR. The Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on risk assessment of products of nanotechnologies, 19 Jan 2009. Available at: http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf

  15. Rauscher H, Rasmussen K, Sokull-Klüttgen B. Regulatory aspects of nanomaterials in the EU. Chemie Ingenieur Technik. 2017;89(3):224–31.

    Article  CAS  Google Scholar 

  16. Aitken RA, Bassan A, Friedrichs S, Hankin SM, Hansen SF, Holmqvist J, Peters SAK, Poland CA, Tran CL. Specific advice on exposure assessment and hazard/risk characterisation for nanomaterials under REACH (RIP-oN 3). Final project report. REACH-NANO consultation. RNC/RIP-oN3/FPR/1/FINAL, 2011

    Google Scholar 

  17. Klein CL, Wiench K, Wiemann M, Ma-Hock L, van Ravenzwaay B, Landsiedel R. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol. 2012;86:1137–51.

    Article  CAS  PubMed  Google Scholar 

  18. Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Groeters S, Wiench K, van Ravenzwaay B. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol. 2014;11(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Molina RM, Konduru NV, Jimenez RJ, Pyrgiotakis G, Demokritou P, Wohlleben W, Brain JD. Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environ Sci: Nano. 2014;1(6):561–73.

    CAS  Google Scholar 

  20. Hayes A, Bakand S. Inhalation toxicology. Mol Clin Exp Toxicol Exp. 2010;(Suppl 100):461–88.

    Google Scholar 

  21. ICRP (International Commission on Radiological Protection). Human respiratory tract model for radiological protection. ICRP publication 66; Annales of ICRP 24, 1994, p. 231

    Google Scholar 

  22. Morrow PE. Possible mechanisms to explain dust overloading of the lungs. Fund Appl Toxicol. 1988;10:369–84.

    Article  CAS  Google Scholar 

  23. Donaldson K, Tran L. Inflammation caused by particles and fibers. Inhal Toxicol. 2002;14:5–27.

    Article  CAS  PubMed  Google Scholar 

  24. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup. Environ. Med. 2007;64:609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konduru N, Keller J, Ma-Hock L, Gröters S, Landsiedel R, Donaghey TC, Brain JD, Wohlleben W, Molina RM. Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol. 2014;11:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, Molina RM. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol. 2014;11:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. ECETOC. European Centre for Ecotoxicology and Toxicology of Chemicals. Technical Report No. 122. Poorly soluble particles. Lung overload. Brussels, Belgium: ECETOC; 2013. Available at: www.ecetoc.org

  28. ILSI (International Life Sciences Institute Risk Science Institute Workshop Participants). The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. Inhal Toxicol. 2000;12(1–2):1–17.

    Google Scholar 

  29. OECD. Organisation for economic co-operation and development. Guideline for testing of chemicals no. 412. Subacute inhalation toxicity: 28-day study. Paris: OECD; 2017.

    Google Scholar 

  30. OECD. Organisation for economic co-operation and development. Guideline for testing of chemicals no. 413. Subchronic inhalation toxicity: 90-day study. Paris: OECD; 2017.

    Google Scholar 

  31. OECD. Organisation for economic co-operation and development. Guideline for testing of chemicals no. 403. Acute inhalation toxicity. Paris: OECD; 2009.

    Book  Google Scholar 

  32. Hofmann T, Ma-Hock L, Athas J-C, Neubauer N, Wohlleben W, Veith U, End N, Gröters S, van Ravenzwaay B, Landsiedel R. Reduction of acute inhalation toxicity testing in rats: the contact angle of pigments predicts their suffocation potentials. Appl In Vitro Toxicol. 2018;4:220–8.

    Article  CAS  Google Scholar 

  33. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. Reprinted by UFAW, 1992. 238 pp

    Google Scholar 

  34. EP and Council. Directive 2010/63/EU of the European Parliament and of the Council of 22 Sept 2010 on the protection of animals used for scientific purposes. OJ L 276/33, 20 Oct 2010

    Google Scholar 

  35. Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Lee JK, Jeong J, Donaldson K. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol. 2013;10:55.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Delaval M, Wohlleben W, Landsiedel R, Baeza-Squiban A, Boland S. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol. 2017;91(1):163–77.

    Article  CAS  PubMed  Google Scholar 

  37. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 2011;8:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol. 2015;89:1557–68.

    Article  CAS  PubMed  Google Scholar 

  39. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol. 2016;14:16.

    Article  CAS  Google Scholar 

  41. Wiemann M, Sauer UG, Vennemann A, Bäcker S, Keller J-G, Ma-Hock L, Wohlleben W, Landsiedel R. In vitro and in vivo short-term pulmonary toxicity of differently sized colloidal amorphous SiO2. Nanomaterials. 2018;8:160.

    Article  PubMed Central  CAS  Google Scholar 

  42. Haase A, Dommershausen N, Schulz M, Landsiedel R, Reichardt P, Krause BC, Tentschert J, Luch A. Genotoxicity testing of different surface-functionalized SiO2, ZrO2 and silver nanomaterials in 3D human bronchial models. Arch Toxicol. 2017;91:3991–4007.

    Article  CAS  PubMed  Google Scholar 

  43. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res. 2009;681:241–58.

    Article  CAS  PubMed  Google Scholar 

  44. Maser E, Schulz M, Sauer UG, Wiemann M, Ma-Hock M, Wohlleben W, Hartwig A, Landsiedel R. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. Mutat Res. 2015;794:57–74.

    Article  CAS  Google Scholar 

  45. Arts JH, Muijser H, Duistermaat E, Junker K, Kuper C. Five day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol. 2007;45(10):1856–67.

    Article  CAS  PubMed  Google Scholar 

  46. Landsiedel R, Wiench K, Wohlleben W. Geeignete Methoden zur Prüfung der Sicherheit von Nanomaterialien. Chemie Ingenieur Technik. 2008;80(11):1641–51.

    Article  CAS  Google Scholar 

  47. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, Landsiedel R. Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol. 2009;21(2):102–18.

    Article  CAS  PubMed  Google Scholar 

  48. Gosens I, Mathijssen LE, Bokkers BG, Muijser H, Cassee FR. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology. 2014;8(6):643–53.

    Article  CAS  PubMed  Google Scholar 

  49. Hahn D, Wiemann M, Haase A, Ossig R, Alessandrini F, M-Hock L, Landsiedel R, Nern M, Vennemann A, Driessen MD, Luch L, Dopp E, Schnekenburger J. Toxicological effects of metal oxide nanomaterials, Chapter 8. In: Wohlleben W, Kuhlbusch TAJ, Lehr CM, Schnekenburger J, editors. Safety of nanomaterials along their lifecycle: release, exposure, human hazards. Boca Raton, FL: CRC Press; 2014. p. 191–211.

    Google Scholar 

  50. Robert L, et al. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol. 2014;11(1):16.

    Article  CAS  Google Scholar 

  51. Kim YH, et al. Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology. 2018;12(3):224–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W. Testing metal oxide nanomaterials for human safety. Adv Mater. 2010;22:2601–27.

    Article  CAS  PubMed  Google Scholar 

  53. Cho WS, Choi M, Han BS, Cho M, Oh J, Park K, Kim SJ, Kim SH, Jeong J. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett. 2007;175(1–3):24–33.

    Article  CAS  PubMed  Google Scholar 

  54. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Todoroki M, Yamamoto M, Hashiba M, Mizuguchi Y, Lee BW, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012;6:587–99.

    Article  CAS  PubMed  Google Scholar 

  55. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Kawaguchi K, Sasaki T. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation. J Nanopart Res. 2015;17(11):442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Morimoto Y, Izumi H, Yoshiura Y, Fujisawa Y, Yatera K, Fujita K, Maru J, Endoh S, Honda K. Basic study of intratracheal instillation study of nanomaterials for the estimation of the hazards of nanomaterials. Ind Health. 2018;56(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ran L, Lihong Y, Yuepu P, Geyu L, Juan Z, Yaoyao S, Zhiping X, Bing Y. Pulmonary toxicity induced by three forms of titanium dioxide nanoparticles via intra-tracheal instillation in rats. Progr Nat Sci. 2009;19:573–9.

    Article  CAS  Google Scholar 

  58. Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Gröters S, van Ravenzwaay B, Landsiedel R. Investigation on the genotoxicity of different sizes of gold nanoparticles. Mutat Res. 2012;745:51–7.

    Article  CAS  PubMed  Google Scholar 

  59. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect. 2006;114(3):328–33.

    Article  PubMed  Google Scholar 

  60. Vennemann A, Alessandrini F, Wiemann M. Differential effects of surface-functionalized zirconium oxide nanoparticles on alveolar macrophages, rat lung, and a mouse allergy model. Nanomaterials. 2017;7:280.

    Article  PubMed Central  CAS  Google Scholar 

  61. Warheit DB, Webb TR, Reed KL. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited amorphous silica. Part Fibre Toxicol. 2006;3(3)

    Google Scholar 

  62. Yang H, Wu QY, Li MY, Lao CS, Zhang YJ. Pulmonary toxicity in rats caused by exposure to intratracheal instillation of SiO2 nanoparticles. Biomed Environ Sci. 2017;30(4):264–79.

    PubMed  Google Scholar 

  63. Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G, Elder A. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol. 2014;11:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Keller JG, Graham U, Koltermann-Jülly J, Gelein R, Ma-Hock L, Landsiedel R, Wiemann M, Oberdörster G, Elder A, Wohlleben W. Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: the case of barium sulfate. Manuscript under review, 2019

    Google Scholar 

  65. Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, Jensen KA, Wallin H, Vogel U. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis. 2017;32(6):581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horie M, Yoshiura Y, Izumi H, Oyabu T, Tomonaga T, Okada T, Lee BW, Myojo T, Kubo M, Shimada M, Morimoto Y. Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung. Antioxidants (Basel). 2016;5(1):4.

    Article  PubMed Central  CAS  Google Scholar 

  67. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee BW, Okada T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Horie M, Kawaguchi K, Sasaki T. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology. 2016;10(5):607–18.

    Article  CAS  PubMed  Google Scholar 

  68. Oyabu T, Myojo T, Lee BW, Okada T, Izumi H, Yoshiura Y, Tomonaga T, Li YS, Kawai K, Shimada M, Kubo M, Yamamoto K, Kawaguchi K, Sasaki T, Morimoto Y. Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int J Mol Sci. 2017;18(12):2757.

    Article  PubMed Central  CAS  Google Scholar 

  69. Greim H, Ziegler-Skylakakis K. Risk assessment for biopersistent granular particles. Inhal Toxicol. 2007;19(Suppl 1):199–204.

    Article  CAS  PubMed  Google Scholar 

  70. Arts JH, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Landsiedel R. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol. 2014;70:492–506.

    Article  CAS  PubMed  Google Scholar 

  71. Burden N, Aschberger K, Chaudhry Q, Clift MJD, Fowler P, Johnston H, Landsiedel R, Rowland J, Stone V, Doak SH. Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regulate Toxicol Pharmacol. 2017;91:257–66.

    Article  CAS  Google Scholar 

  72. Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, Boyes W, Brown S, Clippinger AJ, Cohen Y, Doa M, Hendren CO, Holden P, Houck K, Kane AB, Klaessig F, Kodas T, Landsiedel R, Lynch I, Malloy T, Miller MB, Muller J, Oberdörster G, Petersen EJ, Pleus RC, Sayre P, Stone V, Sullivan KM, Tentschert J, Wallis P, Nel AE. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano. 2015;9(4):3409–17.

    Article  CAS  PubMed  Google Scholar 

  73. OECD. Organisation for economic co-operation and development series on testing and assessment no. 194. Guidance on grouping of chemicals. ENV/JM/MONO(2014)4. 2nd ed. Paris: OECD; 2014.

    Google Scholar 

  74. Bos PM, Gottardo S, Scott-Fordsmand JJ, van Tongeren M, Semenzin E, Fernandes TF, Hristozov D, Hund-Rinke K, Hunt N, Irfan MA, Landsiedel R, Peijnenburg WJ, Sánchez Jiménez A, van Kesteren PC, Oomen AG. The MARINA Risk Assessment Strategy: A flexible strategy for efficient information collection and risk assessment of nanomaterials. Int J Environ Res Public Health. 2015;12:15007–21.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Braakhuis HM, Oomen AG, Cassee FR. Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol Appl Pharmacol. 2016;299:3–7.

    Article  CAS  PubMed  Google Scholar 

  76. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29:730–41.

    Article  CAS  PubMed  Google Scholar 

  77. Oomen AG, Bos PMJ, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, van der Kammer F, Kühnel D, Hristozov D, Marcomini A, Migliore L, Scott-Fordsmand J, Wick P, Landsiedel R. Concern-driven integrated approaches to nanomaterial testing and assessment—Report of the NanoSafety Cluster Working Group 10. Nanotoxicology. 2014;8:334–48.

    Article  PubMed  Google Scholar 

  78. Oomen AG, Bleeker EA, Bos PM, van Broekhuizen F, Gottardo S, Groenewold M, Hristozov D, Hund-Rinke K, Irfan MA, Marcomini A, Peijnenburg WJ, Rasmussen K, Jiménez AS, Scott-Fordsmand JJ, van Tongeren M, Wiench K, Wohlleben W, Landsiedel R. Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health. 2015;12:13415–1334.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S, Hankin S, Hartl MG, Hartmann N, Hristozov D, Hund-Rinke K, Johnston H, Marcomini A, Panzer O, Roncato D, Saber AT, Wallin H, Scott-Fordsmand JJ. ITS-NANO—prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol. 2014;11:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol. 2015;71(2 Suppl):S1–27.

    Article  CAS  PubMed  Google Scholar 

  81. Arts JH, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Neubauer N, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul Toxicol Pharmacol. 2016;76:234–61.

    Article  PubMed  Google Scholar 

  82. Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. J Nanopart Res. 2017;19:171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Landsiedel R, Sauer UG, De Jong W. Risk assessment and risk management, Chapter 8. In: Fadeel B, Pietroiusti A, Shvedova AA, editors. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health. 2nd ed. London: Academic Press; 2017. p. 189–222.

    Chapter  Google Scholar 

  84. Avramescu M-L, Rasmussen PE, Chénier M, Gardner HD. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environ Sci Pollut Res. 2017;24:1553–64.

    Article  CAS  Google Scholar 

  85. Koltermann-Jülly J, Keller JG, Vennemann A, Werle K, Ma-Hock L, Landsiedel R, Wiemann M, Wohlleben W. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: grouping by biodissolution and transformation. NanoImpact. 2018;12:29–41.

    Article  Google Scholar 

  86. De Jong WH, De Rijk E, Brunelli A, Wohlleben W, Stone V, Bonetto A, Marcomini A, Gosens I, Cassee FR. Toxicity of copper oxide and basic copper carbonate nanoparticles after short term oral exposure in rats. Nanotoxicology. 2019;13(1):50–72.

    Article  PubMed  CAS  Google Scholar 

  87. Hellack B, Nickel C, Albrecht C, Kuhlbusch TAJ, Boland S, Baeza-Squiban A, Wohlleben W, Schins RPF. Analytical methods to assess the oxidative potential of nanoparticles: a review. Environ Sci Nano. 2017;4:1920–34.

    Article  CAS  Google Scholar 

  88. Hellack B, Werle K, Bahl A, Nickel C, Ruggiero E, Haase A, Wohlleben W. Surface reactivity measured by the ESR and FRAS assays substantiates the similarity of nanoforms for several substances, but may not establish hazard groups. Manuscript in preparation, 2019

    Google Scholar 

  89. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010;28:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. ECHA. European Chemicals Agency. Guidance on information requirements and chemical safety assessment. Appendix R.6-1 for nanomaterials applicable to the Guidance on QSARs and Grouping of Chemicals. Version 1.0, May 2017, ECHA-17-G-17-EN, 29 pp

    Google Scholar 

  91. Morimoto Y, Izumi H, Yoshiura Y, Fujishima K, Yatera K, Yamamoto K. Usefulness of intratracheal instillation studies for estimating nanoparticle-induced pulmonary toxicity. Int J Mol Sci. 2016;17(2):165.

    Article  PubMed Central  CAS  Google Scholar 

  92. Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, Kanno J, Sakamoto Y, Alexander DB, Alexander WT, Jiegou X, Tsuda H. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 2016;107(7):924–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 2016;13(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Fukushima S, Kasai T, Umeda Y, Ohnishi M, Sasaki T, Matsumoto M. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment. J Occup Health. 2017;60(1):10–30.

    Article  PubMed  PubMed Central  Google Scholar 

  95. MAK. Commission for the investigation of health hazards of chemical compounds in the work area. Nanomaterials. Report. Edited by Deutsche Forschungsgemeinschaft (DFG). Germany: Wiley-VCH; 2013, 94 pp., ISBN: 978-3-527-33571-8

    Google Scholar 

Download references

Acknowledgements

Dr. med. vet. Ursula G. Sauer (Scientific Consultancy—Animal Welfare, Germany) was hired as scientific writer of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Landsiedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landsiedel, R., Gamo, M., Hirose, A. (2019). The Role of In Vivo Screening Studies in Assessing Manufactured Nanomaterials. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics