Skip to main content

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

  • 1896 Accesses

Abstract

Advancement in miniaturization in recent years has enabled high-throughput, in-parallel, rapid, and precise operations in modern medical and biological research. Although numerous biomimetic devices have been inspired by nature cues, the artificial gadgets still cannot be on a par with their natural counterparts. Caenorhabditis elegans (C. elegans), the smallest multi-cellular model animal, has become a popular platform for drug screening, biosensing, genetic engineering, neuroscience, developmental biology, and so forth since its first debut made by Sydney Brenner nearly five decades ago. The nematode C. elegans features small size, transparency body, fully sequenced genomes, high genetic similarity with humans, short life cycle, and simple neural network. The combination of C. elegans and microchip can prompt promising uses in some aspects. To cope with the new demands, the scientific community has endeavored great efforts to meet all sorts of worm maneuvers, such as sorting, immobilization, long-term imaging, confined culture, and biomechanics. The proposed manipulation repertoire then leads to realizations of a wide applications. Examples may include drug screening for pharmaceutics, point-of-care testing (POCT) for diseases, and fundamental research. Although worms-on-a-chip (WoC) appears to remain in its infancy stage of development, intensive research has gradually unveiled novel possibilities in many potential fields. This chapter aims to introduce the current development of WoCs and provides examples according to their categories. Pros and cons will be addressed in the end. Some practical uses will also be suggested for the future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankeny RA (2001) The natural history of Caenorhabditis elegans research. Nat Rev Genet 2:474

    CAS  Google Scholar 

  2. Johnson CD, Duckett JG, Culotti JG, Herman RK, Meneely PM, Russell RL (1981) An Acetylcholinesterase-defficient mutant of the nematode Caenorhabditis elegans. Genetics 97:261

    CAS  Google Scholar 

  3. Ward A, Liu J, Feng Z, Xu XZS (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11:916

    CAS  Google Scholar 

  4. Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6:e198

    Google Scholar 

  5. Margie O, Palmer C, Chin-Sang I (2013) C. elegans Chemotaxis Assay. JoVE 74:50069

    Google Scholar 

  6. Gabel CV, Gabel H, Pavlichin D, Kao A, Clark DA, Samuel ADT (2007) Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J Neurosci 27:7586

    CAS  Google Scholar 

  7. Chung SH, Clark DA, Gabel CV, Mazur E, Samuel ADT (2006) The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci 7:30

    Google Scholar 

  8. Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J (2015) Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. elife 4:e07493

    Google Scholar 

  9. Shen XN, Arratia PE (2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208101

    CAS  Google Scholar 

  10. Ward A, Liu J, Feng Z, Shawn Xu XZ (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11:916–922

    CAS  Google Scholar 

  11. Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 96:11399–11403

    Google Scholar 

  12. Belfer SJ, Chuang H-S, Freedman BL, Yuan J, Norton M, Bau HH, Raizen DM (2013) Caenorhabditis-in-drop array for monitoring C. elegans quiescent behavior. Sleep 36:689–698

    Google Scholar 

  13. Ying D, Zhang K, Li N, Ai X, Liang Q, Wang Y, Luo G (2012) A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans. Biochip J 6:197–205

    CAS  Google Scholar 

  14. Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT (2011) Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 108:17504–17509

    CAS  Google Scholar 

  15. Brenner S (1973) The genetics of behavior. Br Med Bull 29:269–271

    CAS  Google Scholar 

  16. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  Google Scholar 

  17. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y-j, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569

    CAS  Google Scholar 

  18. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340

    CAS  Google Scholar 

  19. Wightman B, Corsi AK, Chalfie M A transparent window into biology: a primer on Caenorhabditis elegans (June 18, 2015), WormBook (ed) The C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.177.1.; http://www.wormbook.org

  20. C.I.C.i.C.e.O. Bargmann (2006) WormBook (ed) The C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.123.1.; http://www.wormbook.org.

  21. Neto MF, Nguyen QH, Marsili J, McFall SM, Voisine C (2016) The nematode Caenorhabditis elegans displays a chemotaxis behavior to tuberculosis-specific odorants. J Clin Tuberc Other Mycobact Dis 4:44–49

    Google Scholar 

  22. Rezai P, Siddiqui A, Selvaganapathy PR, Gupta BP (2010) Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip 10:220–226

    CAS  Google Scholar 

  23. Manière X, Lebois F, Matic I, Ladoux B, Di Meglio J-M, Hersen P (2011) Running worms: C. elegans self-sorting by electrotaxis. PLoS One 6:e16637

    Google Scholar 

  24. Wang X, Hu R, Ge A, Hu L, Wang S, Feng X, Du W, Liu B-F (2015) Highly efficient microfluidic sorting device for synchronizing developmental stages of C. elegans based on deflecting electrotaxis. Lab Chip 15:2513–2521

    CAS  Google Scholar 

  25. Han B, Kim D, Hyun Ko U, Shin JH (2012) A sorting strategy for C. elegans based on size-dependent motility and electrotaxis in a micro-structured channel. Lab Chip 12:4128–4134

    CAS  Google Scholar 

  26. Luo L, Cook N, Venkatachalam V, Martinez-Velazquez LA, Zhang X, Calvo AC, Hawk J, MacInnis BL, Frank M, Ng JHR, Klein M, Gershow M, Hammarlund M, Goodman MB, Colón-Ramos DA, Zhang Y, Samuel ADT (2014) Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc Natl Acad Sci U S A 111:2776–2781

    CAS  Google Scholar 

  27. Kimata T, Sasakura H, Ohnishi N, Nishio N, Mori I (2012) Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm 1:31–41

    Google Scholar 

  28. T.M.o.C.e.F. Stiernagle (2006) WormBook (ed) The C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.101.1.; http://www.wormbook.org

  29. J.A. Lewis and J.T. Fleming, Basic culture methods. Methods in cell biology, ed. H.F. Epstein and D.C. Shakes. Vol. 48. 1995, San Diego: Academic Press

    Google Scholar 

  30. Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A (2007) Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25:663

    CAS  Google Scholar 

  31. Shi W, Wen H, Lin B, Qin J (2011) Microfluidic platform for the study of Caenorhabditis elegans. In: Microfluidics. Springer, Berlin, pp 323–338

    Google Scholar 

  32. Wen H, Qin J (2012) Analysis of Caenorhabditis elegans in microfluidic devices. Science China Chem 55:484–493

    CAS  Google Scholar 

  33. Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci 104:13891–13895

    CAS  Google Scholar 

  34. Ai X, Zhuo W, Liang Q, McGrath PT, Lu H (2014) A high-throughput device for size based separation of C. elegans developmental stages. Lab Chip 14:1746–1752

    CAS  Google Scholar 

  35. Chung K, Crane MM, Lu H (2008) Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 5:637

    CAS  Google Scholar 

  36. Dong L, Cornaglia M, Lehnert T, Gijs MA (2016) Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure. Lab Chip 16:574–585

    CAS  Google Scholar 

  37. Chronis N (2010) Worm chips: microtools for C. elegans biology. Lab Chip 10:432–437

    CAS  Google Scholar 

  38. Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727

    CAS  Google Scholar 

  39. Yang L, Hong T, Zhang Y, Arriola JGS, Nelms BL, Mu R, Li D (2017) A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomed Microdevices 19:38

    Google Scholar 

  40. Cho Y, Porto DA, Hwang H, Grundy LJ, Schafer WR, Lu H (2017) Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans. Lab Chip 17:2609–2618

    CAS  Google Scholar 

  41. Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci 104:15132–15137

    CAS  Google Scholar 

  42. Gilleland CL, Falls AT, Noraky J, Heiman MG, Yanik MF (2015) Computer-assisted transgenesis of Caenorhabditis elegans for deep phenotyping. Genetics 201:39–46

    CAS  Google Scholar 

  43. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594

    CAS  Google Scholar 

  44. Hulme SE, Shevkoplyas SS, Apfeld J, Fontana W, Whitesides GM (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7:1515–1523

    CAS  Google Scholar 

  45. Lee H, Kim SA, Coakley S, Mugno P, Hammarlund M, Hilliard MA, Lu H (2014) A multi-channel device for high-density target-selective stimulation and long-term monitoring of cells and subcellular features in C. elegans. Lab Chip 14:4513–4522

    CAS  Google Scholar 

  46. Aubry G, Zhan M, Lu H (2015) Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip 15:1424–1431

    CAS  Google Scholar 

  47. Chokshi TV, Ben-Yakar A, Chronis N (2009) CO 2 and compressive immobilization of C. elegans on-chip. Lab Chip 9:151–157

    CAS  Google Scholar 

  48. Geng H, Song H, Qi J, Cui D (2011) Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res Lett 6:312

    Google Scholar 

  49. Hwang H, Krajniak J, Matsunaga Y, Benian GM, Lu H (2014) On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection. Lab Chip 14:3498–3501

    CAS  Google Scholar 

  50. Chuang H-S, Chuang W-Y (2017) Rapid, reversible and addressable immobilization of Caenorhabditis elegans in Pluronic F-127 using an optoelectric device. Sensors Actuators B Chem 253:376–383

    CAS  Google Scholar 

  51. Benhal P, Chase JG, Gaynor P, Oback B, Wang W (2014) AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14:2717–2727

    CAS  Google Scholar 

  52. Huang L, Tu L, Zeng X, Mi L, Li X, Wang W (2016) Study of a microfluidic chip integrating single cell trap and 3D stable rotation manipulation. Micromachines 7:141

    Google Scholar 

  53. Chuang H-S, Raizen DM, Lamb A, Dabbish N, Bau HH (2011) Dielectrophoresis of Caenorhabditis elegans. Lab Chip 11:599–604

    CAS  Google Scholar 

  54. Huang L, Zhao P, Wu J, Chuang H-S, Wang W (2018) On-demand dielectrophoretic immobilization and high-resolution imaging of C. elegans in microfluids. Sensors Actuators B Chem 259:703–708

    CAS  Google Scholar 

  55. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    CAS  Google Scholar 

  56. Krajniak J, Lu H (2010) Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–1868

    CAS  Google Scholar 

  57. Berthier J (2012) Micro-drops and digital microfluidics. William Andrew, Norwich

    Google Scholar 

  58. Wen H, Yu Y, Zhu G, Jiang L, Qin J (2015) A droplet microchip with substance exchange capability for the developmental study of C. elegans. Lab Chip 15:1905–1911

    CAS  Google Scholar 

  59. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8:e53419

    CAS  Google Scholar 

  60. Zhuo W, Lu H, McGrath PT (2017) Microfluidic platform with spatiotemporally controlled micro-environment for studying long-term C. elegans developmental arrests. Lab Chip 17:1826–1833

    CAS  Google Scholar 

  61. Pittman WE, Sinha DB, Zhang WB, Kinser HE, Pincus Z (2017) A simple culture system for long-term imaging of individual C. elegans. Lab Chip 17:3909–3920

    CAS  Google Scholar 

  62. Churgin MA, Jung S-K, Yu C-C, Chen X, Raizen DM, Fang-Yen C (2017) Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. elife 6:e26652

    Google Scholar 

  63. Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, Fontana W, Whitesides GM (2010) Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip 10:589–597

    CAS  Google Scholar 

  64. Gilpin W, Uppaluri S, Brangwynne C (2015) Worms under pressure: bulk mechanical properties of C. elegans are independent of the cuticle. Biophys J 108:1887–1898

    CAS  Google Scholar 

  65. Park SJ, Goodman MB, Pruitt BL (2007) Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci U S A 104:17376

    CAS  Google Scholar 

  66. Doll JC, Nahid H, Klejwa N, Kwon R, Coulthard SM, Petzold B, Goodman MB, Pruitt BL (2009) SU-8 force sensing pillar arrays for biological measurements. Lab Chip 9:1449–1454

    CAS  Google Scholar 

  67. Liu P, Mao D, Martin RJ, Liang D (2012) An integrated fiber-optic microfluidic device for detection of muscular force generation of microscopic nematodes. Lab Chip 12:3458–3466

    CAS  Google Scholar 

  68. Rabets Y, Backholm M, Dalnokiveress K, Ryu WS (2014) Direct measurements of drag forces in C. elegans crawling locomotion. Biophys J 107:1980–1987

    CAS  Google Scholar 

  69. Ghanbari A, Nock V, Johari S, Blaikie R, Chen XQ, Wang W (2012) A micropillar-based on-chip system for continuous force measurement of C. elegans. J Micromech Microeng 22:95009–95018

    Google Scholar 

  70. Johari S, Nock V, Alkaisi MM, Wang W (2013) On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip 13:1699–1707

    CAS  Google Scholar 

  71. Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W (2015) An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. Biomicrofluidics 9:71–94

    Google Scholar 

  72. Ewa KZ-S, Wojciech W, Zbigniew M, Mariusz ZR (2012) Stem cells as a novel tool for drug screening and rreatment of degenerative diseases. Curr Pharm Des 18:2644–2656

    Google Scholar 

  73. Bithi SS, Vanapalli SA (2017) Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters. Sci Rep 7:41707

    CAS  Google Scholar 

  74. Csöbönyeiová M, Polák Š, Danišovič LU (2016) Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol 94:687–694

    Google Scholar 

  75. O’Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69–70:247–253

    Google Scholar 

  76. Chen X, Barclay JW, Burgoyne RD, Morgan A (2015) Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 9:65

    CAS  Google Scholar 

  77. Lockery SR, Hulme SE, Roberts WM, Robinson KJ, Laromaine A, Lindsay TH, Whitesides GM, Weeks JC (2012) A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip 12:2211–2220

    CAS  Google Scholar 

  78. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527

    CAS  Google Scholar 

  79. Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91:161–169

    CAS  Google Scholar 

  80. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    CAS  Google Scholar 

  81. Hilliard MA, Bargmann CI, Bazzicalupo P (2002) C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 12:730–734

    CAS  Google Scholar 

  82. Hilliard MA, Bergamasco C, Arbucci S, Plasterk RHA, Bazzicalupo P (2004) Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J 23:1101

    CAS  Google Scholar 

  83. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, A novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259

    CAS  Google Scholar 

  84. Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256

    CAS  Google Scholar 

  85. Cheung BHH, Cohen M, Rogers C, Albayram O, de Bono M (2005) Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 15:905–917

    CAS  Google Scholar 

  86. Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI (2006) A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol 4:e274

    Google Scholar 

  87. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430:317–322

    CAS  Google Scholar 

  88. Dusenbery DB (1980) Appetitive response of the nematode Caenorhabditis elegans to oxygen. J Comp Pathol 136:333–336

    Google Scholar 

  89. Ludewig AH, Schroeder FC Ascaroside signaling in C. elegans (January 18, WormBook (ed) The C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.155.1.; Available from: http://www.wormbook.org

  90. Altun ZF, Hall DH (2010) Nervous system, neuronal support cells. In: WormAtlas. https://doi.org/10.3908/wormatlas.1.19. Edited for the web by LA Herndon. Last revision: June 6, 2012

  91. Luo L, Gabel CV, Ha H-I, Zhang Y, Samuel ADT (2008) Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants. J Neurophysiol 99:2617–2625

    Google Scholar 

  92. Shi W, Qin J, Ye N, Lin B (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–1435

    CAS  Google Scholar 

  93. Aubry G, Lu H (2017) Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans. Lab Chip 17:4303–4311

    CAS  Google Scholar 

  94. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    CAS  Google Scholar 

  95. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    CAS  Google Scholar 

  96. Kim JH, Lee SH, Cha YJ, Hong SJ, Chung SK, Park TH, Choi SS (2017) C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles’ uptake and toxicity assay. Sci Rep 7:40225

    CAS  Google Scholar 

  97. Anderson GL, Cole RD, Williams PL (2004) Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem 23:1235–1240

    CAS  Google Scholar 

  98. Boyd WA, Cole RD, Anderson GL, Williams PL (2003) The effects of metals and food availability on the behavior of Caenorhabditis elegans. Environ Toxicol Chem 22:3049–3055

    CAS  Google Scholar 

  99. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72

    CAS  Google Scholar 

  100. Tvermoes BE, Boyd WA, Freedman JH (2010) Molecular characterization of numr-1 and numr-2: genes that increase both resistance to metal-induced stress and lifespan in Caenorhabditis elegans. J Cell Sci 123:2124–2134

    CAS  Google Scholar 

  101. Wang K-C, Kumar A, Williams SJ, Green NG, Kim KC, Chuang H-S (2014) An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab Chip 14:3958–3967

    CAS  Google Scholar 

  102. Wang J-C, Ku H-Y, Shieh D-B, Chuang H-S (2016) A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration. Biomicrofluidics 10:014113

    Google Scholar 

  103. Chuang H-S, Chen Y-J, Cheng H-P (2018) Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α. Biosens Bioelectron 101:75–83

    CAS  Google Scholar 

  104. Chung C-Y, Wang J-C, Chuang H-S (2017) Simultaneous and quantitative monitoring of co-cultured Pseudomonas aeruginosa and Staphylococcus aureus with antibiotics on a diffusometric platform. Sci Rep 7:46336

    CAS  Google Scholar 

  105. Jin W, Ho HL, Cao YC, Ju J, Qi LF (2013) Gas detection with micro- and nano-engineered optical fibers. Opt Fiber Technol 19:741–759

    CAS  Google Scholar 

  106. Wan Y, Su Y, Zhu X, Liu G, Fan C (2013) Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 47:1–11

    CAS  Google Scholar 

  107. Lafleur JP, Jönsson A, Senkbeil S, Kutter JP (2016) Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 76:213–233

    CAS  Google Scholar 

  108. Conrad H, Schenk H, Kaiser B, Langa S, Gaudet M, Schimmanz K, Stolz M, Lenz M (2015) A small-gap electrostatic micro-actuator for large deflections. Nat Commun 6:10078

    CAS  Google Scholar 

  109. Norihan AH, Yunas J, Yeop Majlis B, Hamzah AA, Bais B (2015) Microfabrication of Si3N4-polyimide membrane for thermo-pneumatic actuator. Microelectron Int 32:18–24

    Google Scholar 

  110. Schneider U, Olofsson BR, Sörnmo O, Drust M, Robertsson A, Hägele M, Johansson R (2014) Integrated approach to robotic machining with macro/micro-actuation. Robot Comput Integr Manuf 30:636–647

    Google Scholar 

  111. Chuang H-S, Kumar A, Wereley ST (2008) Open optoelectrowetting droplet actuation. Appl Phys Lett 93:064104

    Google Scholar 

  112. Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G, Shikata K, Morita M, Watanabe A, Morita M, Kakeji Y, Inoue F, Maehara Y (2011) Colorectal cancer screening with odour material by canine scent detection. Gut 60:814–819

    Google Scholar 

  113. György H, J. Gunvor af Klinteberg, Sven J, István H (2008) Human ovarian carcinomas detected by specific odor. Integr Cancer Ther 7:76–80

    Google Scholar 

  114. Hirotsu T, Sonoda H, Uozumi T, Shinden Y, Mimori K, Maehara Y, Ueda N, Hamakawa M (2015) A Highly Accurate Inclusive Cancer Screening Test Using Caenorhabditis elegans Scent Detection. PLoS One 10:e0118699

    Google Scholar 

  115. Tee LF, Tan TL, Neoh H-M, Jamal R (2017) Rapid detection of Sepsis using CESDA: the Caenorabditis elegans Sepsis detection assay. bioRxiv:144873

    Google Scholar 

  116. Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci 105:8044–8049

    CAS  Google Scholar 

  117. Wakabayashi T, Sakata K, Togashi T, Itoi H, Shinohe S, Watanabe M, Shingai R (2015) Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans. BMC Neurosci 16:79

    Google Scholar 

  118. Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72:4061–4065

    CAS  Google Scholar 

  119. Jurado P, Kodama E, Tanizawa Y, Mori I (2010) Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans. Genes. Brain Behav 9:120–127

    CAS  Google Scholar 

  120. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:344

    CAS  Google Scholar 

  121. Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8:653–656

    CAS  Google Scholar 

  122. Li W, Feng Z, Sternberg PW, Shawn Xu XZ (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687

    CAS  Google Scholar 

  123. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102:3184–3191

    CAS  Google Scholar 

  124. Qin J, Wheeler AR (2007) Maze exploration and learning in C. elegans. Lab Chip 7:186–192

    CAS  Google Scholar 

  125. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92:9368–9372

    CAS  Google Scholar 

  126. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281:334–340

    CAS  Google Scholar 

  127. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172

    CAS  Google Scholar 

  128. Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci U S A 99:17131–17136

    CAS  Google Scholar 

  129. Oeda T, Shimohama S, Kitagawa N, Kohno R, Imura T, Shibasaki H, Ishii N (2001) Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 10:2013–2023

    CAS  Google Scholar 

  130. Cornaglia M, Krishnamani G, Mouchiroud L, Sorrentino V, Lehnert T, Auwerx J, Gijs MAM (2016) Automated longitudinal monitoring of in vivo protein aggregation in neurodegenerative disease C. elegans models. Mol Neurodegener 11:17

    Google Scholar 

  131. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395

    CAS  Google Scholar 

  132. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354

    CAS  Google Scholar 

  133. Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, Mosharov EV, Studer L (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209

    CAS  Google Scholar 

  134. Yamamoto K, Tanei Z-i, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T (2015) Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease. Cell Rep 11:859–865

    CAS  Google Scholar 

  135. Cepeda C, Galvan L, Holley SM, Rao SP, André VM, Botelho EP, Chen JY, Watson JB, Deisseroth K, Levine MS (2013) Multiple sources of striatal inhibition are differentially affected in huntington’s disease mouse models. J Neurosci Off J Soc Neurosci 33:7393–7406

    CAS  Google Scholar 

  136. Tønnesen J, Sørensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci 106:12162–12167

    Google Scholar 

  137. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury. Nat Neurosci 16:64–70

    CAS  Google Scholar 

  138. Ji Z-G, Wang H (2015) Optogenetic control of astrocytes: is it possible to treat astrocyte-related epilepsy? Brain Res Bull 110:20–25

    CAS  Google Scholar 

  139. Narayan A, Laurent G, Sternberg PW (2011) Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proc Natl Acad Sci 108:9667–9672

    CAS  Google Scholar 

  140. Faumont S, Rondeau G, Thiele TR, Lawton KJ, McCormick KE, Sottile M, Griesbeck O, Heckscher ES, Roberts WM, Doe CQ, Lockery SR (2011) An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS One 6:e24666

    CAS  Google Scholar 

  141. Geary TG, Sakanari JA, Caffrey CR (2015) Anthelmintic drug discovery: into the future. J Parasitol 101:125–133

    Google Scholar 

  142. Chen B, Deutmeyer A, Carr J, Robertson AP, Martin RJ, Pandey S (2011) Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance. Parasitology 138:80–88

    CAS  Google Scholar 

  143. Carr JA, Parashar A, Gibson R, Robertson AP, Martin RJ, Pandey S (2011) A microfluidic platform for high-sensitivity, real-time drug screening on C. elegans and parasitic nematodes. Lab Chip 11:2385–2396

    CAS  Google Scholar 

  144. Weeks JC, Roberts WM, Robinson KJ, Keaney M, Vermeire JJ, Urban JF, Lockery SR, Hawdon JM (2016) Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research. Int J Parasitol Drugs Drug Resist 6:314–328

    Google Scholar 

  145. Hu C, Kearn J, Urwin P, Lilley C, Connor VO’, Holden-Dye L, Morgan H (2014) StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes. Lab Chip 14:2447–2455

    CAS  Google Scholar 

  146. Hengartner MO, Horvitz HR (1994) The ins and outs of programmed cell death during C. elegans development. Philos Trans R Soc Lond B Biol Sci 345:243

    CAS  Google Scholar 

  147. Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc B 366:9–16

    CAS  Google Scholar 

  148. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y (2006) Amyloid-β-induced pathological behaviors are suppressed by ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102

    CAS  Google Scholar 

  149. Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC (2004) Caenorhabditis elegans MPP+ model of parkinson’s disease for high-throughput drug screenings. Neurodegener Dis 1:175–183

    CAS  Google Scholar 

  150. Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Johnston PA, Shun TY, Lazo JS, Perlmutter DH, Silverman GA, Pak SC (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 5:e15460

    Google Scholar 

  151. Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, Stasiuk S, Schertzberg M, Angus McQuibban G, Caffrey CR, Cutler SR, Tyers M, Giaever G, Nislow C, Fraser AG, MacRae CA, Gilleard J, Roy PJ (2015) Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun 6:7485

    CAS  Google Scholar 

  152. Smout MJ, Kotze AC, McCarthy JS, Loukas A (2010) A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis 4:e885

    Google Scholar 

  153. Kevin V, Abraham Phillip L (2017) A truly Lego ® -like modular microfluidics platform. J Micromech Microeng 27:035004

    Google Scholar 

  154. Zhao W, Zhang L, Jing W, Liu S, Tachibana H, Cheng X, Sui G (2013) An integrated microfluidic device for rapid serodiagnosis of amebiasis. Biomicrofluidics 7:011101

    Google Scholar 

  155. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82:967–973

    CAS  Google Scholar 

  156. Jiang J, Zhao H, Shu W, Tian J, Huang Y, Song Y, Wang R, Li E, Slamon D, Hou D, Du X, Zhang L, Chen Y, Wang Q (2017) An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells. Sci Rep 7:42612

    CAS  Google Scholar 

  157. Gómez-Sjöberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563

    Google Scholar 

  158. Lee C-C, Sui G, Elizarov A, Shu CJ, Shin Y-S, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng H-R (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:1793

    CAS  Google Scholar 

  159. Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6:96–104

    CAS  Google Scholar 

  160. Fidalgo LM, Maerkl SJ (2011) A software-programmable microfluidic device for automated biology. Lab Chip 11:1612–1619

    CAS  Google Scholar 

  161. Amin AM, Thakur R, Madren S, Chuang H-S, Thottethodi M, Vijaykumar TN, Wereley ST, Jacobson SC (2013) Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid Nanofluid 15:647–659

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology in Taiwan under the grants 107-2221-E-006-054-MY3 and 107-2622-E-006-022-CC2. W.-H.Wang is grateful to the financial support from the One-Thousand Young Talent Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sheng Chuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chuang, HS., Wang, WH., Chen, CS. (2019). Worms on a Chip. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_6

Download citation

Publish with us

Policies and ethics