Skip to main content

Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy

  • Chapter
  • First Online:
Hearing Loss: Mechanisms, Prevention and Cure

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1130))

Abstract

In the auditory system, the primary sensory neurons, spiral ganglion neurons (SGNs), transmit complex acoustic information from hair cells to the second-order sensory neurons in the cochlear nucleus for sound processing, thus building the initial bridge between the physical world of sound and the perception of that sound. Cochlear SGN loss causes irreversible hearing impairment because this type of neural cell cannot regenerate. A better understanding of the molecular mechanisms of formation, structure, degeneration, and protection of SGNs will help to design potential therapeutic strategies for preservation and replacement of them in the cochlear implant recipient. In this review, we described and summarized the following about SGNs: (1) their cell biology and their peripheral and central connections, (2) mechanisms of their neuronal damage and their protection, and (3) the neural and synaptic mechanism of auditory neuropathy and current options for hearing rehabilitation from auditory neuropathy. The updates of the research progress and the significant issues on these topics were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamson CL, Reid MA, Davi RL (2002) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22(4):1385–1396

    CAS  PubMed  Google Scholar 

  2. Agterberg M, Versnel HG, Jc SG, Albers F, Klis S (2008) Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hear Res 244(2):25–34

    CAS  PubMed  Google Scholar 

  3. Agterberg MJ, Versnel H, Dijk LM, Groot JC, Klis SF (2009) Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened Guinea Pigs. Jaro J Assoc Res Otolaryngol 10(3):355–367

    PubMed  Google Scholar 

  4. Alam SA, Robinson BK, Huang J, Green SH (2007) Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 503(6):832–852. https://doi.org/10.1002/cne.21430

    Article  CAS  PubMed  Google Scholar 

  5. Angeli S, Lin X, Liu XZ (2012) Genetics of hearing and deafness. Anat Rec (Hoboken) 295(11):1812–1829. https://doi.org/10.1002/ar.22579

    Article  CAS  Google Scholar 

  6. Bardley J, Beale T, Graham J, Bell M (2008) Variable long-term outcomes from cochlear implantation in children with hypoplastic auditory nerve. Cochlea Implants Int 9:34–35

    Google Scholar 

  7. Berlin CI (1999) Auditory neuropathy:using OAEs and ABRs from screening to management. Semin Hear 20:307–308

    Google Scholar 

  8. Brown MC, Berglund AM, Kiang NY, Ryugo DK (1988) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278(4):581–590

    CAS  PubMed  Google Scholar 

  9. Chikar JA, Colesa DJ, Swiderski DL, Polo AD, Raphael Y, Pfingst BE (2008) Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res 245(1):24–34

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Coate TM, Kelley MW (2013) Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 24(5):460–469

    PubMed  PubMed Central  Google Scholar 

  11. Conde de Felipe MM, Feijoo Redondo A, García-Sancho J, Schimmang T, Durán Alonso MB (2011) Cell- and gene-therapy approaches to inner ear repair. Histol Histopathol 26(7):923–940

    CAS  PubMed  Google Scholar 

  12. Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge ASB (2006) Engraftment and differentiation of embryonic stem cell–derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of corti. Dev Neurobiol 66(13):1489–1500

    Google Scholar 

  13. Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68(2):293–308. https://doi.org/10.1016/j.neuron.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  14. Echteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci U S A 89:6324–6327

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu Y, Ding D, Wei L, Jiang H, Salvi R (2013) Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. Biomed Res Int 2013:628064. https://doi.org/10.1155/2013/628064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geisler CD (1998) From sound to synapse: physiology of the mammalian ear. Oxford University Press, New York

    Google Scholar 

  17. Gilels F, Paquette ST, Zhang J, Rahman I, White PM (2013) Mutation of Foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci 33(47):18409–18424. https://doi.org/10.1523/jneurosci.2529-13

    Article  CAS  PubMed  Google Scholar 

  18. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154

    CAS  PubMed  Google Scholar 

  19. Hackney CM, Osen KK, Ottersen OP, Storm-Mathisen J, Manjaly G (1996) Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Eur J Neurosci 8(1):79–91

    CAS  PubMed  Google Scholar 

  20. Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128(1–2):147–165

    CAS  PubMed  Google Scholar 

  21. Harris MS, Gilbert JL, Lormore KA, Musunuru SA, Fritsch MH (2011) Cisplatin ototoxicity affecting cochlear implant benefit. Otol Neurotol 32(6):969–972. https://doi.org/10.1097/MAO.0b013e3182255893

    Article  PubMed  PubMed Central  Google Scholar 

  22. He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y et al (2014) Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 23(6):747–760

    PubMed  Google Scholar 

  23. Huang LC, Thorne PR, Housley GD, Montgomery JM (2007) Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134:2925–2933

    CAS  PubMed  Google Scholar 

  24. Huang LC, Barclay M, Lee K, Peter S, Housley GD, Thorne PR et al (2012) Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev 7:38

    PubMed  PubMed Central  Google Scholar 

  25. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A et al (2017) Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med 11(6):1766–1778

    CAS  PubMed  Google Scholar 

  26. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeong SW, Kim LS, Hur D, Bae WY, Kim JR, Lee JH (2010) Gentamicin-induced spiral ganglion cell death: apoptosis mediated by ROS and the JNK signaling pathway. Acta Otolaryngol 130(6):670–678. https://doi.org/10.3109/00016480903428200

    Article  CAS  PubMed  Google Scholar 

  28. Kanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM et al (2002) Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 454(3):350–360

    CAS  PubMed  Google Scholar 

  29. Kiang NY, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217(4555):175–177

    CAS  PubMed  Google Scholar 

  30. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “Temporary” noise-induced hearing loss. J Neurosc Off J Soc Neurosci 29(45):14077–14085

    CAS  Google Scholar 

  31. Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330(Pt B):191–199

    PubMed  PubMed Central  Google Scholar 

  32. Kundu P, Rout N (2010) The impact of high gain conventional hearing aid on OAEs in a case of auditory neuropathy/dys-synchrony. East J Med 15:15–16

    Google Scholar 

  33. Ladrech S, Guitton M, Saido T, Lenoir M (2004) Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 477(2):149–160. https://doi.org/10.1002/cne.20252

    Article  CAS  PubMed  Google Scholar 

  34. Lallemend F, Lefebvre PP, Hans G, Rigo JM, Tr VDW, Moonen G et al (2003) Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 87(2):508–521

    CAS  PubMed  Google Scholar 

  35. Lallemend F, Hadjab S, Hans G, Moonen G, Lefebvre PP, Malgrange B (2005) Activation of protein kinase CbetaI constitutes a new neurotrophic pathway for deafferented spiral ganglion neurons. J Cell Sci 118(19):4511–4525

    CAS  PubMed  Google Scholar 

  36. Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA (2006) Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26(13):3541–3550. https://doi.org/10.1523/jneurosci.2488-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9(10):1293–1299

    CAS  PubMed  Google Scholar 

  38. Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S et al (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liberman MC (1978) Auditory-nerve response from cats raised in a lownoise chamber. J Acoust Soc Am 63:442–455

    CAS  PubMed  Google Scholar 

  40. Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216(4551):1239–1241

    Google Scholar 

  41. Liberman MC (2017) Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res 6:927

    Google Scholar 

  42. Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801–808

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu W, Fan Z, Han Y, Zhang D, Li J, Wang H (2012) Intranuclear localization of apoptosis-inducing factor and endonuclease G involves in peroxynitrite-induced apoptosis of spiral ganglion neurons. Neurol Res 34(10):915–922. https://doi.org/10.1179/1743132812y.0000000098

    Article  CAS  PubMed  Google Scholar 

  44. Liu W, Xu X, Fan Z, Sun G, Han Y, Zhang D et al (2018) Wnt signaling activates TP53-induced glycolysis and apoptosis regulator and protects against cisplatin-induced spiral ganglion neuron damage in the mouse Cochlea. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7288

  45. Martinez-Monedero R, Liu C, Weisz C, Vyas P, Fuchs PA, Glowatzki E (2016) GluA2-containing AMPA receptors distinguish ribbon-associated from ribbonless afferent contacts on rat cochlear hair cells. eNeuro 3(2):11080–11085

    Google Scholar 

  46. Matthews G, Fuchs P (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812–822

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller JM, Miller AL, Yamagata T, Bredberg G, Altschuler RA (2002) Protection and regrowth of the auditory nerve after deafness: neurotrophins, antioxidants and depolarization are effective in vivo. Audiol Neurootol 7(3):175–179. https://doi.org/10.1159/000058306

    Article  CAS  PubMed  Google Scholar 

  48. Mohammadian F, Eatemadi A, Daraee H (2017) Application of stem cell for the regeneration of spiral ganglion neurons. Cell Mol Biol 63(1):6–12

    CAS  PubMed  Google Scholar 

  49. Moser T, Starr A (2016) Auditory neuropathy–neural and synaptic mechanisms. Nat Rev Neurol 12:135–149

    CAS  PubMed  Google Scholar 

  50. Moser T, Predoehl F, Starr A (2013) Review of hair cell synapse defects in sensorineural hearing impairment. Otol Neurotol 34:995–1004

    PubMed  Google Scholar 

  51. Nakaizumi T, Kawamoto K, Minoda R, Raphael Y (2004) Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurotol 9(3):135–143

    CAS  Google Scholar 

  52. Narne VK, Vanaja CS (2009) Perception of speech with envelope enhancement in individuals with auditory neuropathy and simulated loss of temporal modulation processing. Int J Audiol 48:700–701

    PubMed  Google Scholar 

  53. Nayagam BA, Muniak MA, Ryugo DK (2011) The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 278(1–2):2–20

    PubMed  PubMed Central  Google Scholar 

  54. Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D et al (2010) Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13:869–876

    CAS  PubMed  Google Scholar 

  55. Pirvola U, Xingqun L, Virkkala J, Saarma M, Murakata C, Camoratto AM et al (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20(1):43–50

    CAS  PubMed  Google Scholar 

  56. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    CAS  PubMed  Google Scholar 

  57. Pouyatos B, Morel G, Lambert-Xolin AM, Maguin K, Campo P (2004) Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus. Hear Res 189(1–2):83–91

    CAS  PubMed  Google Scholar 

  58. Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884(1):249–254

    CAS  PubMed  Google Scholar 

  59. Pujol R, Rebillard G, Puel JL, Lenoir M, Eybalin M, Recasens M (1990) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol Suppl 476:32–36

    CAS  PubMed  Google Scholar 

  60. Rance G, Barker EJ (2009) Speech and language outcomes in children with auditory neuropathy/dys-synchrony managed with either cochlear implants or hearing aids. Int J Audiol 48(6):313–320

    PubMed  Google Scholar 

  61. Rance G, Starr A (2015) Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138:3141–3158

    PubMed  Google Scholar 

  62. Rance G, Corben LA, Du Bourg E, King A, Delatycki MB (2010) Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia. Neuroscience 171:552–553

    CAS  PubMed  Google Scholar 

  63. Rathinam R, Ghosh S, Neumann WL, Jamesdaniel S (2015) Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discovery 1:15052

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosenbluth J (1962) The fine structure of acoustic ganglia in the rat. J Cell Biol 12:329–359

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25(1):51–101

    CAS  PubMed  Google Scholar 

  66. Ruel J, Bobbin RP, Vidal D, Pujol R, Puel JL (2000) The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology 39(11):1959–1973

    CAS  PubMed  Google Scholar 

  67. Rutherford MA, Chapochnikov NM, Moser T (2012) Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32:4773–4789

    CAS  PubMed  Google Scholar 

  68. Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847

    CAS  PubMed  Google Scholar 

  69. Santarelli R, Rossi R, Scimemi P, Cama E, Valentino ML, La Morgia C et al (2015) OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138:563–576

    PubMed  PubMed Central  Google Scholar 

  70. Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J et al (2008) Sensorineural deafness and seizures in mice lacking Vesicular Glutamate Transporter 3. Neuron 57:263–275

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci Off J Soc Neurosci 33(34):13686–13694

    CAS  Google Scholar 

  72. Sharif S, Nakagawa T, Ohno T, Matsumoto M, Kita T, Riazuddin S et al (2007) The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport 18(4):351

    PubMed  Google Scholar 

  73. Shepherd RK, Coco A, Epp SB, Crook JM (2005) Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 486(2):145–158

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shepherd RK, Coco A, Epp SB (2008) Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 242(1):100–109

    CAS  PubMed  Google Scholar 

  75. Shibata SB, Cortez SR, Beyer LA, Wiler JA, Polo AD, Pfingst BE et al (2010) Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 223(2):464

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174(5):1229–1246

    CAS  PubMed  Google Scholar 

  77. Soares ID, Menezes PL, Carnauba AT, de Andrade KC, Lins OG (2016) Study of cochlear microphonic potentials in auditory neuropathy. Braz J Otorhinolaryngol 82:722–736

    PubMed  Google Scholar 

  78. Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 200:275e291

    Google Scholar 

  79. Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91(5–6):451–456

    CAS  PubMed  Google Scholar 

  80. Stamataki S, Francis HW, Lehar M, May BJ, Ryugo DK (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221(1):104–118

    PubMed  Google Scholar 

  81. Steinbach S, Lutz J (2007) Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 357(1):14–19

    CAS  PubMed  Google Scholar 

  82. Sujeong J, Hyong-Ho C, Song-Hee K, Kyung-Hwa L, Yeoul JJ, Jong-Seong P et al (2015) Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf guinea pigs. Clin Exp Otorhinolaryngol 8(2):83–91

    Google Scholar 

  83. Sun S, Babola T, Pregernig G, So KS, Nguyen M, Su SM et al (2018) Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174(5):1247–1263

    CAS  PubMed  Google Scholar 

  84. Thomsen E (1966) The ultrastructure of the spiral ganglion in the guinea pig. Acta Otolaryngol 63(Suppl. 224):442

    Google Scholar 

  85. Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D et al (2013) TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol Disord Drug Targets 12(3):360–370

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Verleye M, Steinschneider R, Fx GJ (2007) Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes. Brain Res 1138(1):30–38

    CAS  PubMed  Google Scholar 

  87. Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G (2014) Neurotrophin 3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. elife 3:e03564

    PubMed Central  Google Scholar 

  88. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse Cochlea. J Assoc Res Otolaryngol Jaro 3(3):248–268

    PubMed  Google Scholar 

  89. Wang J, Ding D, Salvi RJ (2003) Carboplatin-induced early cochlear lesion in chinchillas. Hear Res 181(1–2):65–72

    CAS  PubMed  Google Scholar 

  90. Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

    CAS  PubMed  Google Scholar 

  91. Wise AK, Richardson R, Hardman J, Clark G, O’Leary S (2005) Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol 487(2):147–165

    CAS  PubMed  Google Scholar 

  92. Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE et al (2010) Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther J Am Soc Gene Ther 18(6):1111–1122

    CAS  Google Scholar 

  93. Wong AC, Ryan AF (2015) Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 21(7):58

    Google Scholar 

  94. Wu JS, Young ED, Glowatzki E (2016) Maturation of spontaneous firing properties after hearing onset in rat auditory nerve fibers: spontaneous rates, refractoriness, and interfiber correlations. J Neurosci 36:10584–10597

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wynne DP, Zeng FG, Bhatt S, Michalewski HJ, Dimitrijevic A, Starr A (2013) Loudness adaptation accompanying ribbon synapse and auditory nerve disorders. Brain 136:1626–1638

    PubMed  PubMed Central  Google Scholar 

  96. Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W et al (2008) Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral change. Mol Psychiatry 13:697–698

    CAS  PubMed  Google Scholar 

  97. Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24(1–3):131–144

    CAS  PubMed  Google Scholar 

  98. Yu Q, Chang Q, Liu X, Wang Y, Li H, Gong S et al (2013) Protection of spiral ganglion neurons from degeneration using small-molecule TrkB receptor agonists. J Neurosci Off J Soc Neurosci 33(32):13042

    CAS  Google Scholar 

  99. Zeng FG, Liu S (2006) Speech perception in individuals with auditory neuropathy. Speech Lang Hear Res 49:367–368

    Google Scholar 

  100. Zhang KD, Coate TM (2017) Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 65:80–87

    PubMed  Google Scholar 

  101. Zhang Y, Liu N, Tang Y, Yang E, Dong S, Huang M et al (2014) Efficient generation of neural stem cell-like cells from rat adipose derived stem cells after lentiviral transduction with green fluorescent protein. Mol Neurobiol 50(2):647–654

    Google Scholar 

  102. Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D et al (2012) Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 32(25):8545–8553

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, W., Wang, X., Wang, M., Wang, H. (2019). Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. In: Li, H., Chai, R. (eds) Hearing Loss: Mechanisms, Prevention and Cure. Advances in Experimental Medicine and Biology, vol 1130. Springer, Singapore. https://doi.org/10.1007/978-981-13-6123-4_6

Download citation

Publish with us

Policies and ethics