Skip to main content

Diagnostic Capability of Optical Coherence Tomography Based Quantitative Analysis for Various Eye Diseases and Additional Factors Affecting Morphological Measurements

  • Chapter
  • First Online:
Retinal Optical Coherence Tomography Image Analysis

Abstract

Successful retinal layer segmentation allows quantitative studies of the retinal structures based on OCT images, which mainly refer to the layer thickness measurements and morphology analyses. The aim of this chapter is to summarize the diagnostic capability of OCT based quantitative analysis for various eye diseases and additional factors affecting morphological measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254, 1178–1181 (1991)

    ADS  Google Scholar 

  2. A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks et al., Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12(5), 051403 (2007)

    Article  ADS  Google Scholar 

  3. R. Hamdan, R.G. Gonzalez, S. Ghostine, C. Caussin, Optical coherence tomography: From physical principles to clinical applications. Arch. Cardiovasc. Dis. 105(10), 529–534 (2012)

    Article  Google Scholar 

  4. C.A. Puliafito, Optical coherence tomography: 20 years after. Ophthalmic Surg. Lasers Imaging 41(Suppl(6)), 5 (2010)

    Article  Google Scholar 

  5. J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, S.D. Jay, Optical Coherence Tomography of Ocular Diseases, 3rd edn. (Slack Inc., Thorofare, 2004)

    Google Scholar 

  6. G. Staurenghi, S. Sadda, U. Chakravarthy, R.F. Spaide, Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. The INOCT consensus. Ophthalmology 121, 1572–1578 (2014)

    Article  Google Scholar 

  7. D.J. Browning, Interobserver variability in optical coherence tomography for macular edema. Am. J. Ophthalmol. 137, 1116–1117 (2004)

    Article  Google Scholar 

  8. D.J. Browning, C.M. Fraser, Intraobserver variability in optical coherence tomography. Am. J. Ophthalmol. 138, 477–479 (2004)

    Article  Google Scholar 

  9. A. Polito, M. Del Borrello, M. Isola, N. Zemella, F. Bandello, Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography. Arch. Ophthalmol. 123, 1330–1337 (2005)

    Article  Google Scholar 

  10. M.G. Krzystolik, S.F. Strauber, L.P. Aiello, R.W. Beck, B.B. Berger, N.M. Bressler, D.J. Browning, R.B. Chambers, R.P. Danis, M.D. Davis, A.R. Glassman, V.H. Gonzalez, P.B. Greenberg, J.G. Gross, J.E. Kim, C. Kollman, Diabetic Retinopathy Clinical Research Network. Reproducibility of macular thickness and volume using Zeiss optical coherence tomography in patients with diabetic macular edema. Ophthalmology 114, 1520–1525 (2007)

    Article  Google Scholar 

  11. P.F. Stetson, Z. Yehoshua, C.A. Garcia Filho, R. Portella Nunes, G. Gregori, P.J. Rosenfeld, OCT minimum intensity as a predictor of geographic atrophy enlargement. Invest. Ophthalmol. Vis. Sci. 55(2), 792–800 (2014). https://doi.org/10.1167/iovs.13-13199

    Article  Google Scholar 

  12. N.S. Abdelfattah, H. Zhang, D.S. Boyer, P.J. Rosenfeld, W.J. Feuer, G. Gregori, S.R. Sadda, Drusen volume as a predictor of disease progression in patients with late age-related macular degeneration in the fellow eye. Invest. Ophthalmol. Vis. Sci. 57(4), 1839–1846 (2016). https://doi.org/10.1167/iovs.15-18572

    Article  Google Scholar 

  13. E. Tatrai, M. Simo, A. Iljicsov, J. Nemeth, D. Cabrera Debuc, G.M. Somfai, In vivo evaluation of retinal neurodegeneration in patients with multiple sclerosis. PLoS ONE 7(1), e30922 (2012). https://doi.org/10.1371/journal.pone.0030922

    Article  ADS  Google Scholar 

  14. B.C. Chauhan, V.M. Danthurebandara, G.P. Sharpe, S. Demirel, C.A. Girkin, C.Y. Mardin, A.F. Scheuerle, C.F. Burgoyne, Bruch’s membrane opening minimum rim width and retinal nerve fiber layer thickness in a normal white population: a multicenter study. Ophthalmology 122(9), 1786–1794 (2015). https://doi.org/10.1016/j.ophtha.2015.06.001

    Article  Google Scholar 

  15. H. Laviers, H. Zambarakji, Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch. Clin. Exp. Ophthalmol. 252(12), 1871–1883 (2014). https://doi.org/10.1007/s00417-014-2840-y. Epub 4 Nov 2014

    Article  Google Scholar 

  16. B.E. Varga, W. Gao, K.L. Laurik, E. Tátrai, M. Simó, G.M. Somfai, D. Cabrera DeBuc, Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. PLoS One 30; 10(11), e0143711 (2015). https://doi.org/10.1371/journal.pone.0143711. eCollection 2015

    Article  Google Scholar 

  17. G.M. Somfai, E. Tátrai, L. Laurik, B.E. Varga, V. Ölvedy, W.E. Smiddy, R. Tchitnga, A. Somogyi, D. Cabrera DeBuc, Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage. BMC Bioinform. 15, 295 (2014)

    Article  Google Scholar 

  18. D. Cabrera Fernández, H. Salinas, C.A. Puliafito, Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express 13(25), 10200–10216 (2005)

    Article  ADS  Google Scholar 

  19. N.R. Kim, S. Hong, J.H. Kim, S.S. Rho, G.J. Seong et al., Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J. Glaucoma 22(2), 133–139 (2013)

    Article  Google Scholar 

  20. D. Cabrera DeBuc, G.M. Somfai, Early detection of retinal thickness changes in diabetes using Optical Coherence Tomography. Med. Sci. Monit. 16, MT15–MT21 (2010)

    Google Scholar 

  21. H.W. van Dijk, F.D. Verbraak, P.H. Kok et al., Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest. Ophthalmol. Vis. Sci. 51, 3660–3665 (2010)

    Article  Google Scholar 

  22. H.W. van Dijk, F.D. Verbraak, P.H.B. Kok et al., Early neurodegeneration in the retina of type 2 diabetic patients. Invest. Ophthalmol. Vis. Sci. 53, 2715–2719 (2012)

    Article  Google Scholar 

  23. Z.Z. Nagy, M. Ecsedy, I. Kovács, Á. Takács, E. Tátrai, G.M. Somfai, D. Cabrera, DeBuc, Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted and standard cataract surgery. J. Cataract Refract. Surg. 38(6), 941–946 (2012). https://doi.org/10.1016/j.jcrs.2012.02.031.d

    Article  Google Scholar 

  24. O. Altintas, P. Iseri, B. Ozkan, Y. Caglar, Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc. Ophthalmol. 116, 137–146 (2008)

    Article  Google Scholar 

  25. M.E. Hajee, W.F. March, D.R. Lazzaro, A.H. Wolintz, E.M. Shrier et al., Inner retinal layer thinning in Parkinson disease. Arch. Ophthalmol. 127, 737–741 (2009)

    Article  Google Scholar 

  26. R. Inzelberg, J.A. Ramirez, P. Nisipeanu, A. Ophir, Retinal nerve fiber layer thinning in Parkinson disease. Vis. Res. 44, 2793–2797 (2004)

    Article  Google Scholar 

  27. C. Almarcegui, I. Dolz, V. Pueyo, E. Garcia, F.J. Fernandez et al., Correlation between functional and structural assessments of the optic nerve and retina in multiple sclerosis patients. Neurophysiol. Clin. 40, 129–135 (2010)

    Article  Google Scholar 

  28. M. Bock, A.U. Brandt, J. Dorr, H. Kraft, N. Weinges-Evers et al., Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin. Neurol. Neurosurg. 112, 647–652 (2010)

    Article  Google Scholar 

  29. C. Paquet, M. Boissonnot, F. Roger, P. Dighiero, R. Gil et al., Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 420, 97–99 (2007)

    Article  Google Scholar 

  30. V. Parisi, R. Restuccia, F. Fattapposta, C. Mina, M.G. Bucci et al., Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin. Neurophysiol. 112, 1860–1867 (2001)

    Article  Google Scholar 

  31. S. Saidha, E.S. Sotirchos, J. Oh, S.B. Syc, M.A. Seigo, N. Shiee et al., Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol. 70(1), 34–43 (2013)

    Article  Google Scholar 

  32. E. Tatrai, A. Szigeti, J. Nemeth, D. Cabrera DeBuc, G.M. Somfai, The effect of axial length on the thickness of the intraretinal layers in the macula. ARVO Meeting Abstracts 53, 4102 (2012)

    Google Scholar 

  33. E.H. Martinez-Lapiscina, S. Arnow, J.A. Wilson et al., Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. (2016). https://doi.org/10.1016/s1474-4422(16)00068-5. Epub 18 Mar 2016

    Article  Google Scholar 

  34. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu et al., Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006). https://doi.org/10.1073/pnas.0506997103. PubMed PMID: 16551749; PubMed Central PMCID: PMC1405907

    Article  ADS  Google Scholar 

  35. B. Hermann, B. Považay, A. Unterhuber, M. Lessel, H. Sattmann et al., Optophysiology of the human retina with functional ultrahigh resolution optical coherence tomography. IOVS 47, 1672 (2006)

    Google Scholar 

  36. J.S. Hardin, G. Taibbi, S.C. Nelson, D. Chao, G. Vizzeri, Factors affecting Cirrus-HD OCT optic disc scan quality: a review with case examples. J. Ophthalmol. 2015, 746150 (2015). https://doi.org/10.1155/2015/746150. Epub 2015 Aug 13

    Article  Google Scholar 

  37. E.Z. Blumenthal, J.M. Williams, R.N. Weinreb, C.A. Girkin, C.C. Berry, L.M. Zangwill, Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 107, 2278–2282 (2002)

    Article  Google Scholar 

  38. P. Carpineto, M. Ciancaglini, E. Zuppardi, G. Falconio, E. Doronzo, L. Mastropasqua, Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 110, 190–195 (2003)

    Article  Google Scholar 

  39. P. Massin, E. Vicaut, B. Haouchine, A. Erginay, M. Paques, A. Gaudric, Reproducibility of retinal mapping using optical coherence tomography. Arch. Ophthalmol. 119, 1135–1142 (2001)

    Article  Google Scholar 

  40. G.C. Hoffmeyer, MacPac: a systematic protocol for OCT scanning of macular pathology. J. Ophthal. Photograph 25, 64–70 (2003)

    Google Scholar 

  41. L.A. Paunescu, J.S. Schuman, L.L. Price, P.C. Stark et al., Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest. Ophthalmol. Vis. Sci. 45, 1716–1724 (2004)

    Article  Google Scholar 

  42. J.S. Schuman, T. Pedut-Kloizman, E. Hertzmark, Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103, 1889–1898 (1996)

    Article  Google Scholar 

  43. D.M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R.J. Noecker, J.G. Fujimoto et al., A new quality assessment parameter for optical coherence tomography. Br. J. Ophthalmol. 90(2), 186–190 (2006). https://doi.org/10.1136/bjo.2004.059824. PubMed PMID: 16424531; PubMed Central PMCID: PMC1860175

    Article  Google Scholar 

  44. G.J. Jaffe, J. Caprioli, Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 137, 156–169 (2004)

    Article  Google Scholar 

  45. R. Ray, S.S. Stinnett, G.J. Jaffe, Evaluation of image artifact produced by OCT of retinal pathology. Am. J. Ophthalmol. 139, 18–29 (2005)

    Article  Google Scholar 

  46. R.H. Silverman, High-resolution ultrasound imaging of the eye—a review. Clin. Exp. Ophthalmol. 37, 54–67 (2009)

    Article  Google Scholar 

  47. R. Guthoff, R.W. Berger, J. Draeger, Measurements of ocular coat dimensions by means of combined A- and B-scan ultrasonography. Ophthalmic Res. 16, 289–291 (1984)

    Article  Google Scholar 

  48. J. Németh, Z. Horóczi, Changes in the ocular dimensions after trabeculectomy. Int. Ophthalmol. 16(4–5), 355 (1992)

    Article  Google Scholar 

  49. N. Demirkaya, H.W. van Dijk, S.M. van Schuppen, M.D. Abramoff, M.K. Garvin, M. Sonka et al., Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 54, 4934–4940 (2013)

    Article  Google Scholar 

  50. J. Huang, X. Liu, Z. Wu, S. Sadda, Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography. Ophthalmic Surg. Lasers Imaging 42, 216–221 (2011)

    Article  Google Scholar 

  51. P.J. Kelty, J.F. Payne, R.H. Trivedi, J. Kelty, E.M. Bowie, B.M. Burger, Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 49, 2668–2672 (2008)

    Article  Google Scholar 

  52. X.R. Huang, Y. Zhou, R.W. Knighton, W. Kong, W.J. Feuer, Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas. Invest. Ophthalmol. Vis. Sci. 53(9), 5869–58676 (2012). Epub 2012/07/28. https://doi.org/10.1167/iovs.12-10001. PubMed PMID: 22836775; PubMed Central PMCID: PMCPMC3428115

    Article  Google Scholar 

  53. S. Ooto, M. Hangai, A. Tomidokoro, H. Saito, M. Araie, T. Otani et al., Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest. Ophthalmol. Vis. Sci. 52, 8769–8779 (2011)

    Article  Google Scholar 

  54. H.L. Rao, A.U. Kumar, J.G. Babu, A. Kumar, S. Senthil, C.S. Garudadri, Predictors of normal optic nerve head, retinal nerve fiber layer, and macular parameters measured by spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 1103–1110 (2011)

    Article  Google Scholar 

  55. C. Samarawickrama, A. Pai, S.C. Huynh, G. Burlutsky, T.Y. Wong, P. Mitchell, Influence of OCT signal strength on macular, optic nerve head, and retinal nerve fiber layer parameters. Invest. Ophthalmol. Vis. Sci. 51, 4471–4475 (2010)

    Article  Google Scholar 

  56. A. Szigeti, E. Tátrai, B.E. Varga, A. Szamosi, D. Cabrera DeBuc, Z.Z. Nagy, J. Németh, G.M. Somfai, The effect of axial length on the thickness of intraretinal layers of the macula. PLoS ONE 10(11), e0142383 (2015). https://doi.org/10.1371/journal.pone.0142383

    Article  Google Scholar 

  57. C.Y. Cheung, D. Chen, T.Y. Wong, Y.C. Tham, R. Wu, Y. Zheng et al., Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Invest. Ophthalmol. Vis. Sci. 52, 9629–9635 (2011)

    Article  Google Scholar 

  58. J.C. Mwanza, M.K. Durbin, D.L. Budenz, C.A. Girkin, C.K. Leung, J.M. Liebmann et al., Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 7872–7879 (2011)

    Article  Google Scholar 

  59. W.K. Song, S.C. Lee, E.S. Lee, C.Y. Kim, S.S. Kim, Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 51, 3913–3918 (2010)

    Article  Google Scholar 

  60. A.C. Wong, C.W. Chan, S.P. Hui, Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye (Lond.) 19, 292–297 (2005)

    Article  Google Scholar 

  61. C.J. Abbott, U. Grünert, M.J. Pianta, N.A. McBrien, Retinal thinning in tree shrews with induced high myopia: optical coherence tomography and histological assessment. Vis. Res. 51(3), 376–385 (2011)

    Article  Google Scholar 

  62. K. Franze, M. Francke, K. Guenter, A.F. Christ, N. Koerber, A. Reichenbach, J. Guck, Spatial mapping of the mechanical properties of the living retina using scanning force microscopy. Soft Matter 7, 3147–3154 (2011)

    Article  ADS  Google Scholar 

  63. T. Chou, M. Siegel, The mechanics of retinal detachment. Phys. Biol. 9, 046001 (2012). http://faculty.biomath.ucla.edu/tchou/pdffiles/blister16.pdf

    Article  ADS  Google Scholar 

  64. C.J. Wolsley, K.J. Saunders, G. Silvestri, R.S. Anderson, Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity. Vis. Res. 48(14), 1554–1561 (2008). https://doi.org/10.1016/j.visres.2008.04.013

    Article  Google Scholar 

  65. M.I. Abdalla, M. Hamdi, Applanation ocular tension in myopia and emmetropia. Br. J. Opthalmol. 54, 122–125 (1970)

    Article  Google Scholar 

  66. T.T. Andreassen, Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res. 31, 435–441 (1980)

    Article  Google Scholar 

  67. X.Q. Li, M. Larsen, I.C. Munch, Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest. Ophthalmol. Vis. Sci. 52, 8438–8441 (2011)

    Article  Google Scholar 

  68. K. Sogawa, T. Nagaoka, A. Takahashi, I. Tanano, T. Tani, A. Ishibazawa et al., Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am. J. Opthalmol. 153, 1129–1132 e1121 (2012)

    Article  Google Scholar 

  69. H.C. Fledelius, A.S. Christensen, C. Fledelius, Juvenile eye growth, when completed? An evaluation based on IOL-Master axial length data, cross-sectional and longitudinal. Acta Ophthalmol. 92, 259–264 (2014)

    Article  Google Scholar 

  70. D. Koozekanani, K. Boyer, C. Roberts, Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans. Med. Imaging 20(9), 900–916 (2001)

    Article  Google Scholar 

  71. T. Fabritius, S. Makita, M. Miura, R. Myllylä, Y. Yasuno, Automated segmentation of the macula by optical coherence tomography. Opt. Express 17(18), 15659–15669 (2009)

    Article  ADS  Google Scholar 

  72. M. Shahidi, Z. Wang, R. Zelkha, Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. Am. J. Ophthalmol. 139(6), 1056–1061 (2005)

    Article  Google Scholar 

  73. H. Ishikawa, D.M. Stein, G. Wollstein, S. Beaton, J.G. Fujimoto, J.S. Schuman, Macular segmentation with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005)

    Article  Google Scholar 

  74. G. Gregori, R.W. Knighton, A robust algorithm for retinal thickness measurements using optical coherence tomography (Stratus OCT). Invest. Ophthalmol. Vis. Sci. 45(13), p3007 (2004)

    Google Scholar 

  75. M.D. Abràmoff, M.K. Garvin, M. Sonka, Retinal imaging and image. IEEE Trans. Med. Imaging 1(3), 169–208 (2010)

    Google Scholar 

  76. S.J. Chiu, X.T. Li, P. Nicholas, C.A. Toth, J.A. Izatt, S. Farsiu, Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18, 19413–19428 (2010)

    Article  ADS  Google Scholar 

  77. M.K. Garvin, M.D. Abràmoff, X. Wu, S.R. Russell, T.L. Burns, M. Sonka, Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  78. A. Lang, A. Carass, M. Hauser, E.S. Sotirchos, P. Calabresi, H.S. Ying, J.L. Prince, Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)

    Article  Google Scholar 

  79. P.A. Dufour, L. Ceklic, H. Abdillahi, S. Schroder et al., Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans. Med. Imaging 32(3), 531–543 (2013)

    Article  Google Scholar 

  80. A. Yazdanpanah, G. Hamarneh, B.R. Smith, M.V. Sarunic, Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans. Med. Imaging 30(2), 484–496 (2011)

    Article  Google Scholar 

  81. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall et al., Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Opt. Express 18(14), 14730–14744 (2010)

    Article  ADS  Google Scholar 

  82. Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma et al., Automated drusen segmentation and quantification in SD-OCT images. Med. Image Anal. 17(8), 1058–1072 (2013)

    Article  Google Scholar 

  83. M.A. Mayer, J. Hornegger, C.Y. Mardin, R.P. Tornow, Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Biomed. Opt. Express 1(5), 1358–1383 (2010)

    Article  Google Scholar 

  84. D. Cabrera DeBuc, A review of algorithms for segmentation of retinal image data using optical coherence tomography, in Image Segmentation, ed. by P.-G. Ho, InTech (2011). Available from: http://www.intechopen.com/books/image-segmentation/a-review-of-algorithms-for-segmentation-of-retinal-image-data-using-optical-coherence-tomography

    Google Scholar 

  85. American Diabetes Association, Diabetic retinopathy. Diabetes Care 25, S90–S93 (2005)

    Google Scholar 

  86. Diabetes Information Clearinghouse. Diabetes, heart disease, and stroke (2005) NIH Publication No.06-5094

    Google Scholar 

  87. J. Cunha-Vaz, J.R. Faria de Abreu, A.J. Campos, Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthalmol. 59, 649–656 (1975)

    Article  Google Scholar 

  88. P.E. Stanga, A.C. Bird, Optical coherence tomography (OCT): principles of operation, technology, indications in vitreoretinal imaging and interpretation of results. Int. Ophthalmol. 23, 191–197 (2001)

    Article  Google Scholar 

  89. U.H. Schaudig, C. Glaefke, F. Scholz et al., Optical coherence tomography for retinal thickness measurement in diabetic patients without clinically significant macular edema. Ophthalmic Surg. Lasers 31, 182–186 (2000)

    Google Scholar 

  90. T. Oshitari, K. Hanawa, E. Adachi-Usami, Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye (Lond.) 23, 884–889 (2009)

    Article  Google Scholar 

  91. B. Asefzadeh, B.M. Fisch, C.E. Parenteau et al., Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy. Clin. Exp. Ophthalmol. 36, 455–463 (2008)

    Article  Google Scholar 

  92. W. Goebel, T. Kretzchmar-Gross, Retinal thickness in diabetic retinopathy: a study using optical coherence tomography (OCT). Retina 22, 759–767 (2002)

    Article  Google Scholar 

  93. N.M. Bressler, A.R. Edwards, A.N. Antoszyk et al., Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am. J. Ophthalmol. 145, 894–901 (2008)

    Article  Google Scholar 

  94. H.W. van Dijk, F.D. Verbraak, M. Stehouwer et al., Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis. Res. 28, 244–248 (2011)

    Google Scholar 

  95. D. Cabrera DeBuc, H.M. Salinas, S. Ranganathan, E. Tatrai, W. Gao et al., Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis. J. Biomed. Opt. 15, 046015 (2010)

    Article  ADS  Google Scholar 

  96. D. Cabrera DeBuc, E. Tatrai, L. Laurik et al., Identifying local structural and optical derangement in the neural retina of individuals with type 1 diabetes. J. Clin. Exp. Ophthalmol. 4, 289 (2013). https://doi.org/10.4172/2155-9570.1000289

    Article  Google Scholar 

  97. S. Vujosevic, E. Midena, Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and müller cells alterations. J. Diabetes Res. Article ID 905058 (2013). https://doi.org/10.1155/2013/905058

    Google Scholar 

  98. R. Akshikar, M. Richardson, R. Crosby-Nwaobi et al., Retinal neuronal changes in people with diabetes. Invest. Ophthalmol. Vis. Sci. 53, 2852 (2012)

    Google Scholar 

  99. C. Biallosterski, M.E. van Velthoven, R.P. Michels et al., Decreased optical coherence tomography measured pericentral retinal thickness in patients with diabetes mellitus type 1 with minimal diabetic retinopathy. Br. J. Ophthalmol. 91, 1135–1138 (2007)

    Article  Google Scholar 

  100. D.J. Browning, C.M. Fraser, S. Clark, The relationship of macular thickness to clinically graded diabetic retinopathy severity in eyes without clinically detected diabetic macular edema. Ophthalmology 115, 533–539 (2008)

    Article  Google Scholar 

  101. I. Pires, R.C. Bernardes, C.L. Lobo et al., Retinal thickness in 25 eyes with mild nonproliferative retinopathy in patients with type 2 diabetes mellitus: comparison of measurements obtained by retinal thickness analysis and optical coherence tomography. Arch. Ophthalmol. 120, 1301–1306 (2002)

    Article  Google Scholar 

  102. J.M. Lopes de Faria, H. Russ, V.P. Costa, Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br. J. Ophthalmol. 86, 725–728 (2002)

    Article  Google Scholar 

  103. A. Verma, P.K. Rani, R. Raman et al., Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye (Lond.) 23, 1824–1830 (2009)

    Article  Google Scholar 

  104. Y. Wang, A. Fawzi, O. Tan et al., Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt. Express 17, 4061–4073 (2009)

    Article  ADS  Google Scholar 

  105. H.W. van Dijk, P.H. Kok, M. Garvin et al., Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 50, 3404–3409 (2009)

    Article  Google Scholar 

  106. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14(17), 7821–7840 (2006)

    Article  ADS  Google Scholar 

  107. R.K. Wang, S. Jackes, Z. Ma et al., Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007)

    Article  ADS  Google Scholar 

  108. Y. Yasuno, Y. Hong, S. Makita et al., In vivo high-contrast imaging of deep posterior eye by 1-mm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15, 6121–6139 (2007)

    Article  ADS  Google Scholar 

  109. Y. Jia, O. Tan, J. Tokayer et al., Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20, 4710–4725 (2012)

    Article  ADS  Google Scholar 

  110. E. Moult, W. Choi, N.K. Waheed et al., Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014)

    Article  Google Scholar 

  111. M.R. Thorell, Q. Zhang, Y. Huang et al., Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014)

    Article  Google Scholar 

  112. Y. Huang, Q. Zhang, M.R. Thorell et al., Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014)

    Article  Google Scholar 

  113. T.S. Hwang, Y. Jia, S.S. Gao, S.T. Bailey, A.K. Lauer, C.J. Flaxel, D.J. Wilson, D. Huang, Optical coherence tomography angiography features of diabetic retinopathy. Retina 35(11), 2371–2376 (2015). https://doi.org/10.1097/iae.0000000000000716

    Article  Google Scholar 

  114. E. Silber, M.K. Sharief, Axonal degeneration in the pathogenesis of multiple sclerosis. J. Neurol. Sci. 170, 11–18 (1999)

    Article  Google Scholar 

  115. C. Fjeldstad, M. Bemben, G. Pardo, Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. J. Clin. Neurosci. 18, 1469–1472 (2011)

    Article  Google Scholar 

  116. V. Parisi, G. Manni, M. Spadaro, G. Colacino, R. Restuccia et al., Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest. Ophthalmol. Vis. Sci. 40, 2520–2527 (1999)

    Google Scholar 

  117. V. Pueyo, J. Martin, J. Fernandez, C. Almarcegui, J. Ara et al., Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. Multiple Scler. 14, 609–614 (2008)

    Article  Google Scholar 

  118. J. Sepulcre, M. Murie-Fernandez, A. Salinas-Alaman, A. Garcia-Layana, B. Bejarano et al., Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 68, 1488–1494 (2007)

    Article  Google Scholar 

  119. H. Tegetmeyer, E. Kühn, Quantitative analysis of changes in macular layers following optic neuritis. Neuro-Ophthalmology 35, 101–107 (2011)

    Article  Google Scholar 

  120. B.M. Burkholder, B. Osborne, M.J. Loguidice, E. Bisker, T.C. Frohman et al., Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch. Neurol. 66, 1366–1372 (2009)

    Article  Google Scholar 

  121. S. Saidha, S.B. Syc, M.K. Durbin, C. Eckstein, J.D. Oakley et al., Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multiple Scler. 17(12), 1449–14463 (2011)

    Article  Google Scholar 

  122. E.C. Davies, K.M. Galetta, D.J. Sackel, L.S. Talman, E.M. Frohman et al., Retinal ganglion cell layer volumetric assessment by spectral-domain optical coherence tomography in multiple sclerosis: application of a high-precision manual estimation technique. J. Neuroophthalmol. 31, 260–264 (2011)

    Article  Google Scholar 

  123. S.B. Syc, S. Saidha, S.D. Newsome, J.N. Ratchford, M. Levy et al., Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 135, 521–533 (2012). https://doi.org/10.1093/brain/awr264

    Article  Google Scholar 

  124. A. Klistorner, H. Arvind, T. Nguyen, R. Garrick, M. Paine et al., Multifocal VEP and OCT in optic neuritis: a topographical study of the structure-function relationship. Doc. Ophthalmol. 118, 129–137 (2009)

    Article  Google Scholar 

  125. A.J. Green, S. McQuaid, S.L. Hauser, I.V. Allen, R. Lyness, Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133, 1591–1601 (2010)

    Article  Google Scholar 

  126. J.B. Kerrison, T. Flynn, W.R. Green, Retinal pathologic changes in multiple sclerosis. Retina 14, 445–451 (1994)

    Article  Google Scholar 

  127. F. Costello, W. Hodge, Y.I. Pan, E. Eggenberger, M.S. Freedman, Using retinal architecture to help characterize multiple sclerosis patients. Can. J. Ophthalmol. 45, 520–526 (2010)

    Article  Google Scholar 

  128. J.B. Fisher, D.A. Jacobs, C.E. Markowitz, S.L. Galetta, N.J. Volpe et al., Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113, 324–332 (2006)

    Article  Google Scholar 

  129. A.P. Henderson, S.A. Trip, P.G. Schlottmann, D.R. Altmann, D.F. Garway-Heath et al., An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131, 277–287 (2008)

    Google Scholar 

  130. S. Saidha, S.B. Syc, M.A. Ibrahim, C. Eckstein, C.V. Warner et al., Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134, 518–533 (2011)

    Article  Google Scholar 

  131. A. Garas, P. Vargha, G. Hollo, Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond.) 25, 57–65 (2011)

    Article  Google Scholar 

  132. N.R. Kim, E.S. Lee, G.J. Seong, J.H. Kim, H.G. An et al., Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 4646–4651 (2010)

    Article  Google Scholar 

  133. A. Schulze, J. Lamparter, N. Pfeiffer, F. Berisha, I. Schmidtmann et al., Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 249, 1039–1045 (2011)

    Article  Google Scholar 

  134. O. Tan, V. Chopra, A.T. Lu, J.S. Schuman, H. Ishikawa et al., Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116(2305–2314), e2301–e2302 (2009)

    Google Scholar 

  135. K.W. Gossage, T.S. Tkaczyk, J.J. Rodriguez, J.K. Barton, Texture analysis of optical coherence tomography images: feasibility for tissue classification. J. Biomed. Opt. 8(3), 570–575 (2003). https://doi.org/10.1117/1.1577575. PubMed PMID: 12880366

    Article  ADS  Google Scholar 

  136. T. Gneiting, M. Schlather, Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46(2), 269–282 (2004). https://doi.org/10.1137/s0036144501394387

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. N. Sarkar, B.B. Chaudhuri, An efficient approach to estimate fractal dimension of textural images. Pattern Recogn. 25(9), 1035–1041 (1992). https://doi.org/10.1016/0031-3203(92)90066-R

    Article  Google Scholar 

  138. M. Hasegawa, J. Liu, K. Okuda, M. Nunobiki, Calculation of the fractal dimensions of machined surface profiles. Wear 192(1), 40–45 (1996)

    Article  Google Scholar 

  139. Y. Huang, Optical coherence tomography (OCT) in hereditary retinal degeneration: layer-by-layer analysis in normal and diseased retinas. Ph.D. dissertation, University of Pennsylvania, 1999

    Google Scholar 

  140. V.D. Svet, About holographic (interferometric) approach to the primary visual perception (2013)

    Article  ADS  Google Scholar 

  141. M. Hammer, D. Schweitzer, E. Thamm, A. Kolb, Optical properties of ocular fundus tissues determined by optical coherence tomography. Opt. Commun. 186(1–3), 149–153 (2000). https://doi.org/10.1016/S0030-4018(00)01054-3

    Article  ADS  Google Scholar 

  142. W. Gao, E. Tatrai, G.M. Somfai, D. Cabrera DeBuc, Assessing the performance of optical properties determination of intraretinal layers in healthy normal and type 1 diabetic eyes using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(6), 3689 (2011)

    Article  Google Scholar 

  143. L.J. Balcer, D.H. Miller, S.C. Reingold, J.A. Cohen, Vision and vision-related outcome measures in multiple sclerosis. Brain J. Neurol. 138, 11–27 (2015)

    Article  Google Scholar 

  144. E. Gordon-Lipkin, B. Chodkowski, D.S. Reich, S.A. Smith, M. Pulicken, L.J. Balcer et al., Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69(16), 1603–1609 (2007)

    Article  Google Scholar 

  145. E. Grazioli, R. Zivadinov, B. Weinstock-Guttman, N. Lincoff, M. Baier, J.R. Wong et al., Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J. Neurol. Sci. 268(1–2), 12–17 (2008)

    Article  Google Scholar 

  146. X. Wang, Y. Jia, R. Spain, B. Potsaid, J.J. Liu, B. Baumann et al., Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br. J. Ophthalmol. 98(10), 1368–1373 (2014). https://doi.org/10.1136/bjophthalmol-2013-304547. PubMed PMID: 24831719

    Article  Google Scholar 

  147. F. Zipp, O. Aktas, The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29(9), 518–527 (2006). https://doi.org/10.1016/j.tins.2006.07.006. PubMed PMID: 16879881

    Article  Google Scholar 

  148. H. Jiang, D. Cabrera DeBuc, S. Delgado, A. Tao, B. Lam, J. Wang, Quantification of macular blood flow volume and microvascular network in multiple sclerosis (MS) (P2.264). Neurology 82(10 Supplement), P2.264 (2014)

    Google Scholar 

  149. H. Jiang, S. Delgado, J. Yuan, W. Yan, D. Cabrera DeBuc, B. Lam et al., Impairment of the retinal nerve fiber integrity and blood flow velocity in multiple sclerosis (P5.224). Neurology 84(14 Supplement), P5.224 (2015)

    Google Scholar 

  150. H. Jiang, Y. Ye, D. Cabrera DeBuc, M. Shen, B.L. Lam, L. Ge et al., Spectral oximetry measured with ultra-high resolution optical coherence tomography in multiple sclerosis, in 38th Annual North American Neuro-Ophthalmology Society (NANOS) Meeting, 11–16 February, San Antonio, TX (2012) (poster presentation)

    Google Scholar 

  151. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11(25), 3490–3497 (2003). https://doi.org/10.1364/oe.11.003490. PubMed PMID: WOS:000187324900021

    Article  ADS  Google Scholar 

  152. P.K. Stys, G.W. Zamponi, J. van Minnen, J.J. Geurts, Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 13(7), 507–514 (2012). https://doi.org/10.1038/nrn3275. PubMed PMID: 22714021

    Article  Google Scholar 

  153. B. Braaf, K.A. Vermeer, K.V. Vienola, J.F. de Boer, Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt. Express 20(18), 20516–20534 (2012). https://doi.org/10.1364/oe.20.020516. PubMed PMID: WOS:000308414800087

    Article  ADS  Google Scholar 

  154. T.D. France, Evidence-based guidelines for amblyogenic risk factors. Am. Orthopt. J. 56, 7–14 (2006)

    Article  Google Scholar 

  155. P.A. Graham, Epidemiology of strabismus. Br. J. Ophthalmol. 58, 224–231 (1974)

    Article  Google Scholar 

  156. L. Kiorpes, S.P. McKee, Neural mechanisms underlying amblyopia. Curr. Opin. Neurobiol. 9, 480–486 (1999)

    Article  Google Scholar 

  157. G. Roper-Hall, Current concepts of amblyopia: a neuro-ophthalmology perspective. Am. Orthopt. J. 57, 2–11 (2007)

    Article  Google Scholar 

  158. G.K. Noorden, Mechanisms of amblyopia. Adv. Ophthalmol. 34, 93–115 (1977)

    Google Scholar 

  159. G.K. Noorden, M.L. Crawford, The lateral geniculate nucleus in human strabismic amblyopia. Invest. Ophthalmol. Vis. Sci. 33, 2729–2732 (1992)

    Google Scholar 

  160. G.K. Noorden, M.L. Crawford, R.A. Levacy, The lateral geniculate nucleus in human anisometropic amblyopia. Invest. Ophthalmol. Vis. Sci. 24, 788–790 (1983)

    Google Scholar 

  161. M.P. Headon, T.P. Powell, Cellular changes in the lateral geniculate nucleus of infant monkeys after suture of the eyelids. J. Anat. 116, 135–145 (1973)

    Google Scholar 

  162. S.M. Sherman, J.R. Wilson, Behavioral and morphological evidence for binocular competition in the postnatal development of the dog’s visual system. J. Comp. Neurol. 161, 183–195 (1975)

    Article  Google Scholar 

  163. G.K. Noorden, Histological studies of the visual system in monkeys with experimental amblyopia. Invest. Ophthalmol. 12, 727–738 (1973)

    Google Scholar 

  164. T.N. Wiesel, D.H. Hubel, Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963)

    Article  Google Scholar 

  165. E.C. Campos, C. Schiavi, P. Benedetti, R. Bolzani, V. Porciatti, Effect of citicoline on visual acuity in amblyopia: preliminary results. Graefes Arch. Clin. Exp. Ophthalmol. 233, 307–312 (1995)

    Article  Google Scholar 

  166. E.M. Banko, J. Kortvelyes, J. Nemeth, B. Weiss, Z. Vidnyanszky, Amblyopic deficits in the timing and strength of visual cortical responses to faces. Cortex 49, 1013–1024 (2013)

    Article  Google Scholar 

  167. K.L. Chow, Failure to demonstrate changes in the visual system of monkeys kept in darkness or in colored lights. J. Comp. Neurol. 102, 597–606 (1955)

    Article  Google Scholar 

  168. E. Rasch, H. Swift, A.H. Riesen, K.L. Chow, Altered structure and composition of retinal cells in dark-reared mammals. Exp. Cell Res. 25, 348–363 (1961)

    Article  Google Scholar 

  169. C.P. Wendell-Smith, Effect of light deprivation on the postnatal development of the optic nerve. Nature 204, 707 (1964)

    Article  ADS  Google Scholar 

  170. G.B. Arden, S.L. Wooding, Pattern ERG in amblyopia. Invest. Ophthalmol. Vis. Sci. 26, 88–96 (1985)

    Google Scholar 

  171. B. Tugcu, B. Araz-Ersan, M. Kilic, E.T. Erdogan, U. Yigit et al., The morpho-functional evaluation of retina in amblyopia. Curr. Eye Res. 38, 802–809 (2013)

    Article  Google Scholar 

  172. A.G. Alotaibi, B. Al Enazi, Unilateral amblyopia: optical coherence tomography findings. Saudi J. Ophthalmol. 25, 405–409 (2011)

    Article  Google Scholar 

  173. M.Y. Yen, C.Y. Cheng, A.G. Wang, Retinal nerve fiber layer thickness in unilateral amblyopia. Invest. Ophthalmol. Vis. Sci. 45, 2224–2230 (2004)

    Article  Google Scholar 

  174. S.W. Yoon, W.H. Park, S.H. Baek, S.M. Kong, Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J. Ophthalmol. 19, 62–67 (2005)

    Article  Google Scholar 

  175. A. Dickmann, S. Petroni, V. Perrotta, A. Salerni, R. Parrilla et al., A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J. AAPOS 15, 338–341 (2011)

    Article  Google Scholar 

  176. A. Dickmann, S. Petroni, A. Salerni, R. Dell’Omo, E. Balestrazzi, Unilateral amblyopia: an optical coherence tomography study. J. AAPOS 13, 148–150 (2009)

    Article  Google Scholar 

  177. S.C. Huynh, C. Samarawickrama, X.Y. Wang, E. Rochtchina, T.Y. Wong et al., Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116, 1604–1609 (2009)

    Article  Google Scholar 

  178. Y. Pang, G.W. Goodfellow, C. Allison, S. Block, K.A. Frantz, A prospective study of macular thickness in amblyopic children with unilateral high myopia. Invest. Ophthalmol. Vis. Sci. 52, 2444–2449 (2011)

    Article  Google Scholar 

  179. O. Altintas, N. Yuksel, B. Ozkan, Y. Caglar, Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J. Pediatr. Ophthalmol. Strabismus 42, 216–221 (2005)

    Google Scholar 

  180. A. Dickmann, S. Petroni, V. Perrotta, R. Parrilla, S. Aliberti et al., Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J. AAPOS 16, 86–88 (2012)

    Article  Google Scholar 

  181. S.Y. Kee, S.Y. Lee, Y.C. Lee, Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J. Ophthalmol. 20, 177–181 (2006)

    Article  Google Scholar 

  182. M.X. Repka, N. Goldenberg-Cohen, A.R. Edwards, Retinal nerve fiber layer thickness in amblyopic eyes. Am. J. Ophthalmol. 142, 247–251 (2006)

    Article  Google Scholar 

  183. M.X. Repka, R.T. Kraker, S.M. Tamkins, D.W. Suh, N.A. Sala et al., Retinal nerve fiber layer thickness in amblyopic eyes. Am. J. Ophthalmol. 148, 143–147 (2009)

    Article  Google Scholar 

  184. R.A. Walker, S. Rubab, A.R. Voll, V. Erraguntla, P.H. Murphy, Macular and peripapillary retinal nerve fibre layer thickness in adults with amblyopia. Can. J. Ophthalmol. 46, 425–427 (2011)

    Article  Google Scholar 

  185. K.L. Chow, A.H. Riesen, F.W. Newell, Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J. Comp. Neurol. 107, 27–42 (1957)

    Article  Google Scholar 

  186. E. Fifkova, Effect of visual deprivation and light on synapses of the inner plexiform layer. Exp. Neurol. 35, 458–469 (1972)

    Article  Google Scholar 

  187. L. Sosula, P.H. Glow, Increase in number of synapses in the inner plexiform layer of light deprived rat retinae: quantitative electron microscopy. J. Comp. Neurol. 141, 427–451 (1971)

    Article  Google Scholar 

  188. L. Weiskrantz, Sensory deprivation and the cat’s optic nervous system. Nature 181, 1047–1050 (1958)

    Article  ADS  Google Scholar 

  189. J.M. Enoch, Receptor amblyopia. Am. J. Ophthalmol. 48(3), 262–274 (1959)

    Article  Google Scholar 

  190. T.P. Colen, J.T. de Faber, H.G. Lemij, Retinal nerve fiber layer thickness in human strabismic amblyopia. Binocular Vis. Strabismus Q. 15, 141–146 (2000)

    Google Scholar 

  191. C.E. Al-Haddad, G.M. El Mollayess, Z.R. Mahfoud, D.F. Jaafar, Z.F. Bashshur, Macular ultrastructural features in amblyopia using high-definition optical coherence tomography. Br. J. Ophthalmol. 97, 318–322 (2013)

    Article  Google Scholar 

  192. A. Szigeti, E. Tátrai, A. Szamosi, P. Vargha, Z.Z. Nagy, J. Németh, D. Cabrera DeBuc, G.M. Somfai, A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation. PLoS One 6;9(2), e88363 (2014)

    Article  ADS  Google Scholar 

  193. B. Alamouti, J. Funk, Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87, 899–901 (2003)

    Article  Google Scholar 

  194. A.H. Kashani, I.E. Zimmer-Galler, S.M. Shah, L. Dustin, D.V. Do et al., Retinal thickness analysis by race, gender, and age using Stratus OCT. Am. J. Ophthalmol. 149(496–502), e491 (2010)

    Google Scholar 

  195. H.E. Bedell, Central and peripheral retinal photoreceptor orientation in amblyopic eyes as assessed by the psychophysical Stiles-Crawford function. Invest. Ophthalmol. Vis. Sci. 19, 49–59 (1980)

    Google Scholar 

  196. P.J. Delint, C. Weissenbruch, T.T. Berendschot, D.V. Norren, Photoreceptor function in unilateral amblyopia. Vis. Res. 38, 613–617 (1998)

    Article  Google Scholar 

  197. C. Williams, D. Papakostopoulos, Electro-oculographic abnormalities in amblyopia. Br. J. Ophthalmol. 79, 218–224 (1995)

    Article  Google Scholar 

  198. J. Leone, K. Koklanis, Z. Georgievski, R. Wilkinson, Macular and retinal nerve fibre layer thickness in strabismus and anisometropic amblyopia. Binocular Vis. Strabismus Q. 23, 227–234 (2008)

    Google Scholar 

  199. E. Hatef, A. Khwaja, Z. Rentiya, M. Ibrahim, M. Shulman et al., Comparison of time domain and spectral domain optical coherence tomography in measurement of macular thickness in macular edema secondary to diabetic retinopathy and retinal vein occlusion. J. Ophthalmol. 2012, 354783 (2012)

    Google Scholar 

  200. Z. Hu, M. Nittala, S. Sadda, Comparison and normalization of retinal reflectivity profiles between spectral-domain optical coherence tomography devices. Invest. Ophthalmol. Vis. Sci. 54(15), 5492 (2013)

    Google Scholar 

  201. H. Chen, X. Chen, Z. Qiu, D. Xiang, W. Chen, F. Shi, J. Zheng, W. Zhu, M. Sonka, Quantitative analysis of retinal layers’ optical intensities on 3D optical coherence tomography for central retinal artery occlusion. Sci. Rep. 5, 9269 (2015)

    Article  ADS  Google Scholar 

  202. K.A. Vermeer, J. van der Schoot, H.G. Lemij, J.F. de Boer, RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment. Invest. Ophthalmol. Vis. Sci. 53(10), 6102–6108 (2012)

    Article  Google Scholar 

  203. T.E. de Carlo, A. Romano, N.K. Waheed, J.S. Duker, A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 1(1), 5 (2015)

    Article  Google Scholar 

  204. C.E. Al-Haddad, G.M. Mollayess, C.G. Cherfan, D.F. Jaafar, Z.F. Bashshur, Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br. J. Ophthalmol. 95, 1696–1699 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Cabrera DeBuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cabrera DeBuc, D., Tian, J., Szigeti, A., Tátrai, E., Varga, B.E., Somfai, G.M. (2019). Diagnostic Capability of Optical Coherence Tomography Based Quantitative Analysis for Various Eye Diseases and Additional Factors Affecting Morphological Measurements. In: Chen, X., Shi, F., Chen, H. (eds) Retinal Optical Coherence Tomography Image Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1825-2_6

Download citation

Publish with us

Policies and ethics