Skip to main content

The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo

  • Chapter
  • First Online:
Chromosome Translocation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1044))

Abstract

The CRISPR/Cas9 system has emerged as a powerful tool to edit the genome. Among many applications, the system generates the exciting possibility of engineering small and large portions of chromosomes to induce a variety of structural alterations such as deletions, inversions, insertions and inter-chromosomal translocations. Furthermore, the availability of viral vectors that express Cas9 has been critical to deliver the CRISPR/Cas9 system directly in vivo to induce chromosomal rearrangements. This review provides an overview of the state-of-the-art CRISPR/Cas9 technology to model a variety of rearrangements in vivo in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338. https://doi.org/10.1038/nature10886

    Article  PubMed  CAS  Google Scholar 

  2. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. https://doi.org/10.1038/nbt.2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hou Z et al (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649. https://doi.org/10.1073/pnas.1313587110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Piganeau M et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23:1182–1193. https://doi.org/10.1101/gr.147314.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiarle R et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–119. https://doi.org/10.1016/j.cell.2011.07.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Frock RL et al (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–186. https://doi.org/10.1038/nbt.3101

    Article  PubMed  CAS  Google Scholar 

  12. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16:299–311. https://doi.org/10.1038/nrg3899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Doudna, J. A. & Charpentier, E. (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

    Article  PubMed  CAS  Google Scholar 

  15. Maddalo D et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427. https://doi.org/10.1038/nature13902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Blasco RB et al (2014) Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9:1219–1227. https://doi.org/10.1016/j.celrep.2014.10.051

    Article  PubMed  CAS  Google Scholar 

  17. Cheong TC, Compagno M, Chiarle R (2016) Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun 7:10934. https://doi.org/10.1038/ncomms10934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Torres R et al (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964. https://doi.org/10.1038/ncomms4964

    Article  PubMed  CAS  Google Scholar 

  19. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700. https://doi.org/10.1038/35015097

    Article  CAS  PubMed  Google Scholar 

  20. Yuan Y et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98:10398–10403. https://doi.org/10.1073/pnas.171321298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5:3728. https://doi.org/10.1038/ncomms4728

    Article  PubMed  CAS  Google Scholar 

  22. Lagutina IV et al (2015) Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 11:e1004951. https://doi.org/10.1371/journal.pgen.1004951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Torres-Ruiz R et al (2017) Efficient recreation of t(11;22) EWSR1-FLI1(+) in human stem cells using CRISPR/Cas9. Stem Cell Reports 8:1408–1420. https://doi.org/10.1016/j.stemcr.2017.04.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vanoli F et al (2017) CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci U S A 114:3696–3701. https://doi.org/10.1073/pnas.1700622114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Semrau S et al (2014) FuseFISH: robust detection of transcribed gene fusions in single cells. Cell Rep 6:18–23. https://doi.org/10.1016/j.celrep.2013.12.002

    Article  PubMed  CAS  Google Scholar 

  26. Gostissa M, Alt FW, Chiarle R (2011) Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol 29:319–350. https://doi.org/10.1146/annurev-immunol-031210-101329

    Article  PubMed  CAS  Google Scholar 

  27. Chen ZH et al (2017) Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol 35:543–550. https://doi.org/10.1038/nbt.3843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566. https://doi.org/10.1038/nature05945

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y et al (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148:908–921. https://doi.org/10.1016/j.cell.2012.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mani RS et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230. https://doi.org/10.1126/science.1178124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin C et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083. https://doi.org/10.1016/j.cell.2009.11.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Boroviak K, Doe B, Banerjee R, Yang F, Bradley A (2016) Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85. https://doi.org/10.1002/dvg.22915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shin HY et al (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464. https://doi.org/10.1038/ncomms15464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reimer J et al (2017) CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 102:1558–1566. https://doi.org/10.3324/haematol.2017.164046

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  36. Nelson CE et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407. https://doi.org/10.1126/science.aad5143

    Article  PubMed  CAS  Google Scholar 

  37. Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411. https://doi.org/10.1126/science.aad5177

    Article  PubMed  CAS  Google Scholar 

  38. Wu W et al (2017) Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 114:1660–1665. https://doi.org/10.1073/pnas.1614775114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455. https://doi.org/10.1146/annurev-med-100708-204735

    Article  PubMed  CAS  Google Scholar 

  40. Kraft, K. et al. (2015) Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in Mice. Cell Reports. https://doi.org/10.1016/j.celrep.2015.01.016

  41. Lupianez DG et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025. https://doi.org/10.1016/j.cell.2015.04.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Charton K et al (2016) Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum Mol Genet 25:4518–4532. https://doi.org/10.1093/hmg/ddw280

    Article  PubMed  CAS  Google Scholar 

  44. Han T et al (2017) R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat Commun 8:15945. https://doi.org/10.1038/ncomms15945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grants R01 CA196703-01 and R01 CA222598-01 to R.C.; Associazione Italiana per la Ricerca sul Cancro (AIRC) grant IG-12023 to R.C.; Worldwide Cancer Research (former AICR) grant 12-0216 to R.C.; National Research Foundation of Korea (NRF) fellowship 2016R1A6A3A03006840 to T.C.C.

Author Information

The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to RC. (roberto.chiarle@childrens.harvard.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Chiarle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheong, TC., Blasco, R.B., Chiarle, R. (2018). The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo. In: Zhang, Y. (eds) Chromosome Translocation. Advances in Experimental Medicine and Biology, vol 1044. Springer, Singapore. https://doi.org/10.1007/978-981-13-0593-1_4

Download citation

Publish with us

Policies and ethics