Skip to main content

Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Biorefineries of second generation (2G) are receiving more attention nowadays as an option for the development of bioeconomy all over the world. One of the main pretreatments utilized in this type of facilities for the conversion of lignocellulosic biomass is the use of hydrothermal processing using only water/steam as catalyst under different forms of heating (steam, electric heating jackets, or microwave radiation) at different temperatures. Currently, biorefineries are focused on obtaining feedstocks to produce biofuels, but the current position of these on the market shows that the new biorefineries must be integrated systems and so there is a need to focus on the valorization of the whole coproducts. One of them is hemicellulose, from which for instance oligomers could be derived and used in different areas as pharmaceutical products, food ingredients, fuels, chemicals, and bioplastics. In Mexico, avocado represents an important source for agro-industrial residues. These residues are in a process of valorization under the biorefinery concept, to obtain different types of bioproducts. This chapter describes the concepts usually utilized for the definition and understanding of biorefinery, especially the utilization of hydrothermal pretreatments. It focuses also on linking the concept of bioeconomy with biorefineries, and it introduces the utilization of avocado residues as an example of a Mexican residue with potential importance in the global market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe M, Ohno H (2014) Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions. In: Fang Z, Smith LR Jr, Qi X (eds) Production of Biofuels and Chemicals with Ionic Liquids. Springer, Dordrecht p, pp 29–59

    Chapter  Google Scholar 

  • Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  • Agnieszka K, Karamac M, Estrella I et al (2012) Phenolic compound profiles and antioxidant capacity of persea americana Mill. peels and seeds of two varieties. J Agric Food Chem 60:4613–4619

    Article  CAS  Google Scholar 

  • Aguedo M, Ruiz HA, Richel A (2015) Non-alkaline solubilization of arabinoxylans from destarched wheat bran using hydrothermal microwave processing and comparison with the hydrolysis by an endoxylanase. Chem Eng Process Process Intensif 96:72–82

    Article  CAS  Google Scholar 

  • Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM et al (2017a) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers Manage 136:50–65

    Article  CAS  Google Scholar 

  • Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM et al (2017b) Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour Technol 243:273–283

    Article  CAS  Google Scholar 

  • Alvarez LD, Moreno AO, Ochoa FG (2012) Avocado. In: Siddiq M (ed) Tropical and subtropical fruits: postharvest physiology, processing and packaging. Wiley-Blackwell, Oxford, pp 437–454

    Google Scholar 

  • Ayala-Zavala JF, Vega-Vega V, Rosas-Domínguez C et al (2011) Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res Int 44:1866–1874

    Article  CAS  Google Scholar 

  • Azad AK, Rasul MG, Khan MMK et al (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sustain Energy Rev 43:331–351

    Article  Google Scholar 

  • Bajpai P (2015) Pulp and paper industry chemicals. Elsevier, USA

    Google Scholar 

  • Ballesteros I, Oliva JM, Navarro AA et al (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84:97–110

    Article  Google Scholar 

  • Barbosa-Martín E, Chel-Guerrero L, González-Mondragón E et al (2016) Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food Bioprod Process 100:457–463

    Article  CAS  Google Scholar 

  • Bergeron C, Carrier DJ (2012) Ramaswamy S Biorefinery co-products: phytochemicals, primary metabolites and value-added biomass processing. Wiley, Noida

    Book  Google Scholar 

  • Blakey RJ, Bower JP, Bertling I (2009) Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biol Technol 53:72–76

    Article  CAS  Google Scholar 

  • Bressani R, Rodas B, Ruiz AS (2009) La Composición Química, Capacidad Antioxidativa y Valor Nutritivo de la Semilla de Variedades de Aguacate. Final Report of the Project FODECYT 02–2006 (National Science and Technology Fund), Universidad del Valle, Guatemala http://glifos.concyt.gob.gt/digital/fodecyt/fodecyt%202006.02.pdf Accessed 15 Apr 2017

  • Builders PF, Nnurum A, Mbah CC et al (2010) The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch/Stärke 62:309–320

    Article  CAS  Google Scholar 

  • Camberos E, Velázquez M, Fernández JM, Rodríguez S (2013) Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass). Sci World J 2013:1–4

    Article  Google Scholar 

  • Carrot SPJM, Carrot MMLR (2007) Lignin from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312

    Google Scholar 

  • Cervantes-Cisneros DE, Arguello-Esparza D, Cabello-Galindo A et al (2017) Hydrothermal process for extraction of macroalgae high value-added compounds. In: Ruiz HA, Thomsen MH, Trajano HL (eds) Hydrothermal processing in biorefineries. Springer, Switzerland, pp 161–181

    Google Scholar 

  • Chan CH, Yusoff R, Ngoh GC (2014) Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 92:1169–1186

    Article  CAS  Google Scholar 

  • Chávez-Sifontes M, Domine ME (2013) Lignin, structure and applications: depolymerization methods for obtaining aromatic derivatives of industrial interest. Av en Ciencias e Ingenería 4:15–46

    Google Scholar 

  • Chel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A et al (2016) Some physicochemical and rheological properties of starch isolated from avocado seeds. Int J Biol Macromol 86:302–308

    Article  CAS  Google Scholar 

  • Chemat F, Cravotto G (2013) Microwave-assisted Extraction for Bioactive Compounds. Springer, Boston

    Google Scholar 

  • Chen HZ (2005) Biotechnology of lignocellulose. Springer, Dordrecht (2013)

    Google Scholar 

  • Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66

    Article  CAS  Google Scholar 

  • Chornet E, Overend RP (2017) How the severity factor in biomass hydrolysis came about. In: Ruiz HA, Thomsen MH, Trajano HL (eds) Hydrothermal processing in biorefineries. Springer, Switzerland, pp 1–3

    Google Scholar 

  • Cowan AK, Wolstenholme BN (2016) Avocado. In: Caballero B, Finglas MP, Toldrá F (eds) Encyclopedia of Food and Health. Academic Press, Oxford, pp 294–300

    Chapter  Google Scholar 

  • Cuevas M, García JF, Hodaifa G et al (2015) Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Ind Crops Prod 70:100–106

    Article  CAS  Google Scholar 

  • da Costa Lopes AM, João KG, Morais ARC et al (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:1–3

    Article  CAS  Google Scholar 

  • da Silva SS, Chandel AK (2014) Biofuels in Brazil: Fundamental Aspects, Recent Developments, and Future Perspectives. Springer, Cham

    Book  Google Scholar 

  • Dabas D, Shegog RM, Ziegler GR et al (2013) Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr Pharm Des 19:6133–6140

    Article  CAS  Google Scholar 

  • Das D (2015) Algal Biorefinery: An Integrated Approach. Springer, Cham

    Book  Google Scholar 

  • Davis L, Rogers P, Pearce J et al (2006) Evaluation of Zymomonas-based ethanol production from a hydrolysed waste starch stream. Biomass Bioenerg 30:809–814

    Article  CAS  Google Scholar 

  • Delazar A, Nahar L, Hamedeyazdan S et al (2012) Microwave-Assisted Extraction in Natural Products Isolation. Nat Prod Isol 864:89–115

    Article  CAS  Google Scholar 

  • Department of Energy Fuel Economy U.S. Ethanol https://www.fueleconomy.gov/feg/ethanol.shtml. Accessed 12 May 2017 (2017)

  • Dicken P (ed) (2003) Global shift: Reshaping the global economic map in the 21st century sixth edition: mapping the changing contours of the world economy. Sage, London

    Google Scholar 

  • Dietrich T, Velasco MCV, Echeverría PJ et al (2016) Crop and Plant Biomass as Valuable Material for BBB. Alternatives for Valorization of Green Wastes. In: Poltronieri P, D’Urso OF (eds) Biotransformation of Agricultural Waste and By-products: The Food, Feed, Fibre, Fuel (4F) Economy. Elsevier, Cambridge, pp 1–20

    Google Scholar 

  • Dominguez MP, Araus K, Bonert P et al ( 2014) The avocado and its waste: an approach of fuel potential/application. In: Lefebvre G, Jiménez G, Cabañas B (eds) Environment, energy and climate change II: energies from new resources and the climate change. Springer International Publishing, Switzerland, pp 199–223

    Google Scholar 

  • Dumeignil F (2012) A new concept of biorefinery comes into operation: the EuroBioRef concept. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: from biomass to chemicals and fuels, 1st edn. Walter de Gruyter, Germany, pp 1–17

    Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: First to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • EC European Comission Research and Innovation Bioeconomy https://ec.europa.eu/research/bioeconomy/index.cfm. Accessed 23 Apr 2017 (2017)

  • FAO Food and Agriculture Organization of the United Nations. Agriculture Database (2014) http://www.fao.org/faostat/en/#data/QC. Accessed 10 Apr 2017

  • Galanakis CM (2012) Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L (ed) Biofuels. Advances in Biochemical Engineering/Biotechnology Springer, Berlin, pp 41–65

    Chapter  Google Scholar 

  • García A, Alriols MG, Llano-Ponte R et al (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour Technol 102:6326–6330

    Article  CAS  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319

    Article  CAS  Google Scholar 

  • Gilpin R, Gilpin JM (2000) The challenge of global capitalism: The world economy in the 21st century. Princeton University Press Princeton, New Jersey

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F et al (2010) hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  • Gómez F, Sánchez S, Iradi M et al (2014) Avocado seeds: extraction optimization and possible use as antioxidant in food. Antioxidants 3:439–454

    Article  CAS  Google Scholar 

  • Green Growth Web Magazine The Nordic Way Key role for biorefineries in the circular bioeconomy. http://nordicway.org/2015/06/key-role-for-biorefineries-in-the-circular-bioeconomy/#.WUiHJ8bmH-k Accessed 20 Apr 2017 (2017)

  • Gullón P, Domínguez H, Parajo JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  CAS  Google Scholar 

  • Gullón P, Pereiro G, Alonso JL et al (2009) Aqueous pretreatment of agricultural wastes: characterization of soluble reaction products. Bioresour Technol 100:5840–5845

    Article  CAS  Google Scholar 

  • Gutiérrez-Contreras M, Lara-Chávez MBN, Guillén-Andrade H et al (2010) Agroecología de la franja aguacatera en Michoacán. México. Interciencia 35:647–653

    Google Scholar 

  • Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM et al. (2013) Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against escherichia coli and staphylococcus aureus. Biomed Res Int 2013:1–9

    Google Scholar 

  • Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9:1493–1505

    Article  CAS  Google Scholar 

  • Jiménez-Arellanes A, Luna-Herrera J, Ruiz-Nicolás R et al (2013) Antiprotozoal and antimycobacterial activities of Persea americana seeds. BMC Complement Altern Med 13(109):1–5

    Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  CAS  Google Scholar 

  • Karimi K (2015) Lignocellulose-based bioproducts. Springer, Switzerland

    Book  Google Scholar 

  • Karunanithy C, Muthukumarappan K (2013) Thermo-mechanical pretreatment of feedstocks. In: Gu T (ed) Green Biomass Pretreatment for Biofuels Production. Springer, Dordrecht, pp 31–65

    Chapter  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Gibbons WR (2012) Extrusion pretreatment of pine wood chips. Appl Biochem Biotechnol 167:81–99

    Article  CAS  Google Scholar 

  • Kitani O, Hall CW, Wagener K (1989) Biomass handbook. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Taylor and Francis, London

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lacerda LG, Colman TAD, Bauab T et al (2014) Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. J Therm Anal Calorim 115:1893–1899

    Article  CAS  Google Scholar 

  • Lacerda LG, Da Silva Carvalho Filho MA, Bauab T et al (2015) The effects of heat-moisture treatment on avocado starch granules: thermoanalytical and structural analysis. J Therm Anal Calorim 120:387–393

    Article  CAS  Google Scholar 

  • Lam PS, Tooyserkani Z, Naimi LJ et al (2013) Pretreatment and pelletization of woody biomass. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer-Verlag, Berlin Heildinberg, pp 93–116

    Chapter  Google Scholar 

  • Larran A, Jozami E, Vicario L et al (2015) Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresour Technol 194:320–325

    Article  CAS  Google Scholar 

  • Le Floch A, Jourdes M, Teissedre P-L (2015) Polysaccharides and lignin from oak wood used in cooperage: composition, interest, assays: a review. Carbohydr Res 417:94–102

    Google Scholar 

  • Leite JJG, Brito EHS, Cordeiro RA et al (2009) Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev Soc Bras Med Trop 42:110–113

    Article  Google Scholar 

  • Liu C, Van Der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:97–108

    Article  CAS  Google Scholar 

  • López-Cobo A, Gómez-Caravaca AM, Pasini F et al (2016) HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT—Food Sci Technol 73:505–513

    Article  CAS  Google Scholar 

  • Luo J, Cai M, Gu T (2013) Pretreatment of lignocellulosic biomass using green ionic liquids. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Dordrecht p, pp 127–153

    Chapter  Google Scholar 

  • Maity SK (2015) Opportunities recent trends, and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev 43:1427–1445

    Article  CAS  Google Scholar 

  • Martín M, Grossmann IE (2012) Optimal Synthesis of Sustainable Biorefineries. In: Stuart PR, El-Halwagi MM (eds) Integrated biorefineries design analysis and optimization. USA, CRC, pp 325–347

    Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Michelin M, Ruiz HA, Silva DP et al (2015) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon JM (eds) Polysaccharides: bioactivity and biotechnology. Springer, Switzerland, pp 475–511

    Chapter  Google Scholar 

  • Moniz P, Pereira H, Duarte LC et al (2014) Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Ind Crops Prod 62:460–465

    Article  CAS  Google Scholar 

  • Montané D, Overend RP, Chornet E (1998) Kinetic models for non-homogeneous complex systems with a time-dependent rate constant. Can J Chem Eng 76:58–68

    Article  Google Scholar 

  • Morais AR, Bogel-Lukasik R (2013) Green chemistry and the biorefinery concept. Sustain Chem Process 1:18

    Article  CAS  Google Scholar 

  • Morton JF (1987) Fruits of warm climates, creative resource systems Inc, Winterville

    Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Moura FA, Macagnan FT, Silva LP (2015) Oligosaccharide production by hydrolysis of polysaccharides: a review. Int J Food Sci Technol 50:275–281

    Article  CAS  Google Scholar 

  • Nabarlatz D, Torras C, Garcia-Valls R et al (2007) Purification of xylo-oligosaccharides from almond shells by ultrafiltration. Sep Purif Technol 53:235–243

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • Narayanaswamy N, Dheeran P, Verma S et al (2013) Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer-Verlag, Berlin Heidelberg p, pp 3–34

    Chapter  Google Scholar 

  • Nigam PS-N, Pandey A (2009) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Dordrecht

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos Trans R Soc A 321:523–536

    Article  CAS  Google Scholar 

  • Overend RP, Chornet E, JA Gascoigne (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments [and discussion]. Philos Trans R Soc London A Math Phys Eng Sci 321:523–536

    Article  CAS  Google Scholar 

  • Perea-Moreno AJ, Aguilera-Ureña MJ, Manzano-Agugliaro F (2016) Fuel properties of avocado stone. Fuel 186:358–364

    Article  CAS  Google Scholar 

  • Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA et al (2016) Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223

    Article  CAS  Google Scholar 

  • Potumarthi R, Baadhe RR, Bhattacharya S (2013) Fermentable sugars from lignocellulosic biomass: technical challenges. In: Gupta KV, Tuohy GM (eds) Biofuel technologies: recent developments. Springer, Berlin Heidelberg, pp 3–27

    Chapter  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  CAS  Google Scholar 

  • Ramos-Jerz MDR, Villanueva S, Jerz G et al. (2013) Persea americana Mill. seed: fractionation, characterization, and effects on human keratinocytes and fibroblasts. Evidence-based Complement Altern Med

    Google Scholar 

  • Rodrigues LA, da Silva MLCP, Alvarez-Mendes MO et al (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174:49–57

    Article  CAS  Google Scholar 

  • Rodríguez-Carpena JG, Morcuende D, Andrade MJ et al (2011a) Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem 59:5625–5635

    Article  CAS  Google Scholar 

  • Rodríguez-Carpena JG, Morcuende D, Estévez M (2011b) Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci 89:166–173

    Article  CAS  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB et al (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  CAS  Google Scholar 

  • Rouches E, Herpoël-gimbert I, Steyer JP et al (2016a) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198

    Article  CAS  Google Scholar 

  • Rouches E, Zhou S, Steyer JP et al (2016b) White-Rot Fungi pretreatment of lignocellulosic biomass for anaerobic digestion: Impact of glucose supplementation. Process Biochem 51:1784–1792

    Article  CAS  Google Scholar 

  • Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424

    Article  CAS  Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP et al (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    Article  CAS  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD et al (2013a) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew Sustain Energy Rev 21:35–51

    Article  CAS  Google Scholar 

  • Ruiz HA, Romaní A, Michelin M et al. (2013b) A importância dos pré-tratamentos no conceito das biorrefinarias. In: Biotecnologia. Sociedade Portuguesa de Biotecnologia. http://www.cienciaviva.pt/img/upload/Boletim3.pdf#page=5. Accesed 24 Apr 2017

  • Ruiz HA, Rodríguez-Jasso RM, Aguedo M et al (2015a) Hydrothermal pretreatments of macroalgal biomass for biorefineries. In: Prokop A, Bajpai R, Zappi M (eds) Algal Biorefineries. Springer, Cham p, pp 467–491

    Chapter  Google Scholar 

  • Ruiz HA, Parajó JC, Teixeira JA (2015b) Biorefinery strategies for macroalgae-based in bioethanol production. In: Sharma UC, Prasad R, Sivakumar S (eds) Energy science and technology, Energy management, vol 12. Studium Press LLC, Houston p, pp 349–361

    Google Scholar 

  • Ruiz HA, Thomsen MH, Trajano HL (2017a) Hydrothermal processing in biorefineries: production of bioethanol and high added-value compounds of second and third generation biomass. Springer Nature, Cham

    Book  Google Scholar 

  • Ruiz HA (2017b) High pressure processing for the valorization of biomass. In: Łukasik RM (ed) High Pressure Technologies in Biomass Conversion, The Royal Society of Chemistry, Croydon, UK, pp vii–viii

    Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5:337–353

    Google Scholar 

  • Samanta AK, Jayapal N, Jayaram C et al (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydrates Diet Fibre 5:62–71

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S et al (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  • Segovia F, Corral-Pérez JJ, Al, ajano MP (2016) Avocado Seed: modeling extraction of bioactive compunds. Ind Crops Prod 85:213–220

    Google Scholar 

  • Shafiei M, Kumar R Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer, Cham p, pp 85–154

    Google Scholar 

  • SIAP Servicio de Información Agroalimentaria y Pesquera (2015) http://infosiap.siap.gob.mx/aagricola_siap_gb/ientidad/index.jsp. Accessed 21 May 2017

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Singh RD, Banerjee J, Arora A et al (2015) Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact Carbohydrates Diet Fibre 5:19–30

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Google Scholar 

  • Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417

    Article  CAS  Google Scholar 

  • Styhre A, Sundgren M (2011) Venturing into the Bioeconomy: Professions, Innovation. Identity. Palgrave Macmillan, London

    Book  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58

    Article  CAS  Google Scholar 

  • Tanimura A, Kikukawa M, Yamaguchi S et al (2015) Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: toward consolidated bioprocessing. Sci Rep 5:9593

    Article  CAS  Google Scholar 

  • Tekin K, Karagöz S, Bektaş SA et al (2014) Review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687

    Article  CAS  Google Scholar 

  • Tsubaki S, Ozaki Y, Azuma J (2010) Microwave-assisted autohydrolysis of Prunus mume stone for extraction of polysaccharides and phenolic compounds. J Food Sci 75:152–159

    Article  CAS  Google Scholar 

  • UN United Nations (2017) World population prospects https://esa.un.org/unpd/wpp/DataQuer. Accessed 14 Apr 2017

  • Wang TH, Lu S (2013) Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chem 138:1531–1535

    Article  CAS  Google Scholar 

  • Wang W, Bostic TR, Gu L (2010) Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem 122:1193–1198

    Article  CAS  Google Scholar 

  • Wang H, Gurau G, Rogers RD et al (2014) Dissolution of biomass using ionic liquids. In: Zhang S, Wang J, Zhau Q, Zhou Q (eds) Structures and interactions of ionic liquids. Springer, Berlin Heidelberg, pp 79–105

    Chapter  Google Scholar 

  • Xiao X, Wang C-Z, Bian J et al (2015) Optimization of bamboo autohydrolysis for the production of xylo-oligosaccharides using response surface methodology. RSC Adv 5:106219–106226

    Article  CAS  Google Scholar 

  • Yahia EM, Woolf AB (2011) Avocado (Persea americana Mill.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing Limited, Sawston, pp 125–186

    Chapter  Google Scholar 

  • Yanagida T, Fujimoto S, Minowa T (2010) Application of the severity parameter for predicting viscosity during hydrothermal processing of dewatered sewage sludge for a commercial PFBC plant. Bioresour Technol 101:2043–2045

    Article  CAS  Google Scholar 

  • Yang M, Kuittinen S, Zhang J et al (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production. Bioresour Technol 179:128–135

    Article  CAS  Google Scholar 

  • Yasir M, Das S, Kharya M (2010) The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn Rev 4:77

    Article  CAS  Google Scholar 

  • Zafar T, Sidhu JS (2011) Avocado: production, quality, and major processed products. In: Sinha N (ed) Handbook of vegetables and vegetable processing. Wiley-Blackwell, Oxford, pp 525–543

    Chapter  Google Scholar 

  • Zanuso E, Lara-Flores AA, Aguilar DL et al (2017) Kinetic modeling, operational conditions, and biorefinery products from hemicellulose: depolymerization and solubilization during hydrothermal processing. In: Ruiz HA, Thomsen MH, Trajano HL (eds) Hydrothermal processing in biorefineries. Springer International Publishing, Switzerland, pp 141–160

    Chapter  Google Scholar 

  • Zhang HF, Yang XH, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  • Zhang P, Chen C, Shen Y et al (2013) Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production. Bioresour Technol 128:835–838

    Article  CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged from the Energy Sustainability Fund 2014–05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564). We gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the Infrastructure Project—INFR201601 (Ref. 269461) and Basic Science Project -2015–01 (Ref. 254808). The authors Anely Lara and Rafael Araújo thank Mexican Science and Technology Council (CONACYT, Mexico) for Master and PhD fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor A. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara-Flores, A.A. et al. (2018). Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_8

Download citation

Publish with us

Policies and ethics