Skip to main content

Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies

  • Chapter
  • First Online:
Book cover Biological Small Angle Scattering: Techniques, Strategies and Tips

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1009))

Abstract

Solution small-angle neutron scattering (SANS) combined with contrast variation provides information about the size and shape of individual components of a multi-component biological assembly, as well as the spatial arrangements between the components. The large difference in the neutron scattering properties between hydrogen and deuterium is key to the method. Isotopic substitution of deuterium for some or all of the hydrogen in either the molecule or the solvent can greatly alter the scattering properties of the biological assembly, often with little or no change to its biochemical properties. Thus, SANS with contrast variation provides unique information not easily obtained using other experimental techniques.

If used correctly, SANS with contrast variation is a powerful tool for determining the solution structure of multi-component biological assemblies. This chapter discusses the principles of SANS theory that are important for contrast variation, essential considerations for experiment design and execution, and the proper approach to data analysis and structure modeling. As sample quality is extremely important for a successful contrast variation experiment, sample issues that can affect the outcome of the experiment are discussed as well as procedures used to verify the sample quality. The described methodology is focused on two-component biological complexes. However, examples of its use for multi-component assemblies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ankner JF, Heller WT, Herwig KW et al (2013) Neutron scattering techniques and applications in structural biology. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) Current protocols in protein science. Wiley, Hoboken

    Google Scholar 

  • Appolaire A, Girard E, Colombo M et al (2014) Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase. Acta Crystallogr D Biol Crystallogr 70:2983–2993. doi:10.1107/S1399004714018446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldon L, Laliberte F, Liu L (2015) Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. doi:10.3402/nano.v6.25661

  • Carsughi F, May RP, Plenteda R, Saroun J (2000) Sample geometry effects on incoherent small-angle scattering of light water. J Appl Crystallogr 33:112–117. doi:10.1107/S0021889899013643

    Article  CAS  Google Scholar 

  • Clark NJ, Zhang H, Krueger S et al (2013) Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints. J Phys Chem B 117:14029–14038. doi:10.1021/jp408710r

    Article  CAS  PubMed  Google Scholar 

  • Curtis JE, Raghunandan S, Nanda H, Krueger S (2012) SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints. Comput Phys Commun 183:382–389. doi:10.1016/j.cpc.2011.09.010

    Article  CAS  Google Scholar 

  • Do C, Heller WT, Stanley C et al (2014) Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 737:42–46. doi:10.1016/j.nima.2013.11.030

    Article  CAS  Google Scholar 

  • Engelman DM, Moore PB (1972) A new method for the determination of biological quarternary structure by neutron scattering. Proc Natl Acad Sci U S A 69:1997–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman D, Moore PB (1975) Determination of quaternary structure by small-angle neutron scattering. Q Rev Biophys 4:219–241

    CAS  Google Scholar 

  • Gabel F (2015) Small-angle neutron scattering for structural biology of protein–RNA complexes. Methods in enzymology. Elsevier, 391–415

    Google Scholar 

  • Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10:415–421. doi:10.1107/S0021889877013879

    Article  Google Scholar 

  • Glatter O (1982) Data treatment. In: Small-angle x-ray scattering. Academic Press, New York, pp 119–165

    Google Scholar 

  • Glatter O, Kratky O (1982) Small-angle x-ray scattering. Academic Press, New York

    Google Scholar 

  • Glinka CJ, Barker JG, Hammouda B et al (1998) The 30 m small-angle neutron scattering instruments at the national institute of standards and technology. J Appl Crystallogr 31:430–445. doi:10.1107/S0021889897017020

    Article  CAS  Google Scholar 

  • Guinier A, Fournet G (1955) Small-angle Scattering of X-rays. Wiley, New York

    Google Scholar 

  • Hansen S (2014) Update for BayesApp : a web site for analysis of small-angle scattering data. J Appl Crystallogr 47:1469–1471. doi:10.1107/S1600576714013156

    Article  CAS  Google Scholar 

  • Heller WT (2010) Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures. Acta Crystallogr D Biol Crystallogr 66:1213–1217. doi:10.1107/S0907444910017658

    Article  CAS  PubMed  Google Scholar 

  • Hoppe W (1973) The label triangulation method and the mixed isomorphous replacement principle. J Mol Biol 78:581–585. doi:10.1016/0022-2836(73)90480-4

    Article  CAS  PubMed  Google Scholar 

  • Ibel K, Stuhrmann HB (1975) Comparison of neutron and x-ray scattering of dilute myoglobin solutions. J Mol Biol 93:255–265

    Article  CAS  PubMed  Google Scholar 

  • Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology – expanding the frontier while avoiding the pitfalls. Protein Sci Publ Protein Soc 19:642–657. doi:10.1002/pro.351

    Article  CAS  Google Scholar 

  • Jacques DA, Langley DB, Hynson RMG et al (2011) A novel structure of an antikinase and its inhibitor. J Mol Biol 405:214–226. doi:10.1016/j.jmb.2010.10.047

    Article  CAS  PubMed  Google Scholar 

  • Jacrot B (1976) The study of biological structures by neutron scattering from solution. Rep Prog Phys 39:911–953. doi:10.1088/0034-4885/39/10/001

    Article  CAS  Google Scholar 

  • Krueger S, Shin J-H, Raghunandan S et al (2011) Atomistic ensemble modeling and small-angle neutron scattering of intrinsically disordered protein complexes: applied to minichromosome maintenance protein. Biophys J 101:2999–3007. doi:10.1016/j.bpj.2011.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger S, Shin J-H, Curtis JE et al (2014) The solution structure of full-length dodecameric MCM by SANS and molecular modeling: structure of dodecameric MCM helicase. Proteins Struct Funct Bioinf 82:2364–2374. doi:10.1002/prot.24598

    Article  CAS  Google Scholar 

  • May RP, Nowotny V (1989) Distance information derived from neutron low– Q scattering. J Appl Crystallogr 22:231–237. doi:10.1107/S0021889888014281

    Article  CAS  Google Scholar 

  • Moore PB (1982) Small-angle scattering techniques for the study of biological macromolecules and macromolecular aggregates. In: Ehrenstein G, Lecar H (eds) Methods of experimental physics. Academic, New York, pp 337–390

    Google Scholar 

  • Neylon C (2008) Small angle neutron and x-ray scattering in structural biology: recent examples from the literature. Eur Biophys J 37:531–541. doi:10.1007/s00249-008-0259-2

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Curtis JE, Fang X, Woodson SA (2014) Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc Natl Acad Sci 111:17134–17139. doi:10.1073/pnas.1410114111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285. doi:10.1017/S0033583507004635

    Article  CAS  PubMed  Google Scholar 

  • Rambo RP, Tainer JA (2010) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle x-ray scattering. Curr Opin Struct Biol 20:128–137. doi:10.1016/j.sbi.2009.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinson KA, Stanley C, Krueger S (2008) Small-angle neutron scattering and the errors in protein structures that arise from uncorrected background and intermolecular interactions. J Appl Crystallogr 41:456–465. doi:10.1107/S0021889808004950

    Article  CAS  Google Scholar 

  • Sarachan KL, Curtis JE, Krueger S (2013) Small-angle scattering contrast calculator for protein and nucleic acid complexes in solution. J Appl Crystallogr 46:1889–1893. doi:10.1107/S0021889813025727

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Kim S, Sali A (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol 12:17. doi:10.1186/1472-6807-12-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenyuk AV, Svergun DI (1991) GNOM – a program package for small-angle scattering data processing. J Appl Crystallogr 24:537–540. doi:10.1107/S002188989100081X

    Article  Google Scholar 

  • Serdyuk IN, Zaccai G (1996) The triple isotopic substitution method in small-angle neutron scattering: application to studying macromolecular complexes. J Mol Struct 383:197–200. doi:10.1016/S0022-2860(96)09286-1

    Article  CAS  Google Scholar 

  • Svergun DI (2010) Small-angle X-ray and neutron scattering as a tool for structural systems biology. Biol Chem. doi:10.1515/bc.2010.093

  • Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–1782. doi:10.1088/0034-4885/66/10/R05

    Article  CAS  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ et al (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci 95:2267–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson MC, Curtis JE (2013) Rapid and accurate calculation of small-angle scattering profiles using the golden ratio. J Appl Crystallogr 46:1171–1177. doi:10.1107/S002188981301666X

    Article  CAS  Google Scholar 

  • Whitten AE, Trewhella J (2009) Small-angle scattering and neutron contrast variation for studying bio-molecular complexes. In: Foote RS, Lee JW (eds) Micro and nano technologies in bioanalysis. Humana Press, Totowa, pp 307–323

    Chapter  Google Scholar 

  • Whitten AE, Jacques DA, Hammouda B et al (2007) The structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition. J Mol Biol 368:407–420. doi:10.1016/j.jmb.2007.01.064

    Article  CAS  PubMed  Google Scholar 

  • Whitten AE, Cai S, Trewhella J (2008) MULCh : modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Crystallogr 41:222–226. doi:10.1107/S0021889807055136

    Article  CAS  Google Scholar 

  • Zaccai G (2012) Straight lines of neutron scattering in biology: a review of basic controls in SANS and EINS. Eur Biophys J EBJ 41:781–787. doi:10.1007/s00249-012-0825-5

    Article  CAS  PubMed  Google Scholar 

  • Zaccai NR, Sandlin CW, Hoopes JT, et al (2016) Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. In: Kelman Z (ed) Methods in enzymology. Elsevier, pp 159–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Krueger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krueger, S. (2017). Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies. In: Chaudhuri, B., Muñoz, I., Qian, S., Urban, V. (eds) Biological Small Angle Scattering: Techniques, Strategies and Tips. Advances in Experimental Medicine and Biology, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-10-6038-0_5

Download citation

Publish with us

Policies and ethics