Skip to main content

An Introduction to Reactive Oxygen Species Metabolism Under Changing Climate in Plants

  • Chapter
  • First Online:

Abstract

Plants are subjected to various kinds of abiotic stresses throughout their life cycles which include salinity, drought, temperature (heat and cold), heavy metal, nutrient deficiency and UV radiation. Such types of stresses in plants lead the overproduction of certain chemical entities known as reactive oxygen species (ROS) which are highly reactive and cause damage to proteins, lipids, carbohydrates and macromolecules. The ROS include hydrogen peroxide (H2O2), superoxide radical (O2), hydroxyl radical (OH), perhydroxyl radical (HO2 ), etc. But, nature has gifted the plants with very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaiacol peroxidase, GOPX; and glutathione-S-transferase, GST) and non-enzymatic (ascorbic acid, AA; glutathione, GSH; tocopherols; flavonoids; proline; etc.) antioxidant defence systems which work in coordination to detoxify and protect plant cells from oxidative damage. Moreover, ROS play a role as secondary messenger which induces cell to undergo programmed cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.) Czech J Genet Plant Breed 46:27–34

    CAS  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heatrh LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Athar HUR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM (2007) Mechanism of CAT A3 induction by cadmium in sunflower leaves. Plant Physiol Biochem 45:589–595

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A et al (2004) Over−expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Graham AI (2002) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, pp 235–254

    Chapter  Google Scholar 

  • Bartoli CG, Gómez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) J Exp Bot 55:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010a) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60:51–59

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010b) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32:551–563

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Moller ALB, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Boguszewska D, Grudkowska M, Zagdanska B (2010) Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.) Potato Res 53:373–382

    Article  CAS  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit – induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155:255–261

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Chang-Quan W, Rui-Chang L (2008) Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol Plant 30:841–847

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  CAS  Google Scholar 

  • Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pak J Bot 41:2497–2506

    CAS  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defense. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Baird LM, Langeberg L et al (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max L. Merr.) root nodules. Plant Physiol 102:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dar MI, Khan FA, Rehman F (2015) Responses of antioxidative defense system and composition of photosynthetic pigments in Brassica juncea L. upon imidacloprid treatments. Abiotic Biotic Stress J. http://dx.doi.org/10.17582/journal.absjournal/2015/1.1.3.15

  • Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, India, pp 155–166

    Chapter  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Google Scholar 

  • Davies KJA (2001) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dePinto MC, DeGara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

    Article  CAS  Google Scholar 

  • Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat GF-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol Mol Plant Pathol 59:297–307

    Article  CAS  Google Scholar 

  • Ellouzi H, Hamed K, Cela J, Müller M, Abdelly C, Munné-Bosch S (2013) Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal Behav 8:e23136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elstner EF (1991) Mechanism of oxygen activation in different compartments. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. Am Soc Plant Physiol, Roseville, pp 13–25

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  CAS  PubMed  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem 10:1723–1740

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Brunetti C, DiFerdinando M, Ferrini F, Tattini M (2011) Stress- induced flavonoids biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapinska M, Skłodowska M, Gabara B (2008) Effect of short and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosys 143:8–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. In: Anjum NA, Lopez-Lauri F (eds) Plant nutrition and abiotic stress tolerance III. Plant stress 5 (Special Issue 1). Global Science Books Ltd., Ikenobe, pp 1–23

    Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatz S, Lambert JDC, Ogilby PR (2007) Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci 6:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Hefny M, Abdel-Kader DZ (2009) Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (Sorghum bicolor L. Moench). In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress. Springer, The Netherlands, pp 25–36

    Chapter  Google Scholar 

  • Hernandez JA, Jimenez AP, Mullineaux SF (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Higuchi ET (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  • Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cysteine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hu X, Zhang A, Zhang J, Jiang M (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Seregelyes C, Manac N, Hill RD (2004) NADH- dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radicals generating compound AAPH. Plant Sci 165: 551–557

    Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, delRio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubany-Mari T, Munné-Bosch S, López-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot 60:107–120

    Article  CAS  PubMed  Google Scholar 

  • Kandziora-Ciupa M, Ciepal R, Nadgorska-Socha A, Barczyk G (2013) A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environ Sci Pollut Res 20:4920–4932

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016a) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016b) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3:420–427

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kukreja S, Nandval AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.) Plant Physiol 160:1157–1164

    Article  CAS  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z et al (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  CAS  PubMed  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chick pea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defense in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31:72–77

    CAS  Google Scholar 

  • Martinez C, Montillet JL, Bresson E et al (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum 18. Mol Plant-Microbe Interact 11:1038–1047

    Article  CAS  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25:79–82

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigment and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata L.) in response to UV-B and dimethoate. Pestic Biochem Physiol 92:30–37

    Article  CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248: 565–577

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F, Triantaphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jaquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D, Bjorkman O (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002a) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002b) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar FT (2011) Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant 33:2321–2328

    Article  CAS  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  CAS  PubMed  Google Scholar 

  • Peng CL, Ou ZY, Liu N, Lin GZ (2005) Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci 12:179–186

    Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  CAS  PubMed  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Polidoros NA, Scandalias JG (1999) Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.) Physiol Plant 106:112–120

    Article  CAS  Google Scholar 

  • Racchi ML, Bagnoli F, Balla I, Danti S (2001) Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.) Plant Cell Rep 20:169–174

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmusson AG, Geisler DA, Moller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. In: Ajum NA, Umar SU, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House, New Delhi, pp 177–258

    Google Scholar 

  • Roychoudhury A, Ghosh S (2013) Physiological and biochemical responses of mung bean (Vigna radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique J Pharm Biol Sci 1:11–21

    Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387–394

    Article  CAS  Google Scholar 

  • Scandalias JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Google Scholar 

  • Sekhar PN, Amrutha RN, Sangam S, Verma DP, Kishor PB (2007) Biochemical characterization, homology modelling and docking studies of ornithine delta aminotransferase- an important enzyme in proline biosynthesis of plants. J Mol Graph Model 26:709–719

    Article  CAS  PubMed  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211. doi:10.1093/jexbot/52.364.2207

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q (2005) Dynamic changes of anti- oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf B: Biointerfaces 42:187–195

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, Taylor and Francis Publishing Company, Boca Raton, pp 89–138

    Google Scholar 

  • Sharma P Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037

    Google Scholar 

  • Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Sieferman-Harms D (1987) The light harvesting function of carotenoids in photosynthetic membrane. Plant Physiol 69:561–568

    Article  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48:200–206

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in black gram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd., Oxford, pp 53–86

    Chapter  Google Scholar 

  • Sreedevi S, Krishnan PN (2012) Detoxification of heavy metal induced oxidative stress in plants, enzymatic and non-enzymatic mechanisms- a mini review. In: Ajum NA, Umar SU, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House, New Delhi, pp 291–307

    Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide-and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. Plant Physiol 552:335–344

    CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol Osmosens Osmosignal 428:419–438

    Article  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Vanaja M, Charyawa NVN, Rao KVN (2000) Effect of cadmium on carbohydrate, nucleic acids and phenolic content in Stigeoclonium tenue Kutz. Indian J Plant Physiol 5:253–256

    CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Przybyla D, Opden Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    Article  CAS  Google Scholar 

  • Wang R, Liu S, Zhou F, Ding C, Hua C (2014) Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L. Z Naturforsch C 69:226–236

    CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  • Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33:1–7

    CAS  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plant 50:389–394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Irfan Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dar, M.I. et al. (2017). An Introduction to Reactive Oxygen Species Metabolism Under Changing Climate in Plants. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_2

Download citation

Publish with us

Policies and ethics