Skip to main content

Role of Quorum Sensing Signals of Rhizobacteria for Plant Growth Promotion

  • Chapter
  • First Online:
Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Signaling events between rhizosphere microbes and plants substantially contribute to establish different qualities of microbe-plant interactions from beneficial cooperativity to pathogenicity. In addition to the pathogen-associated molecular patterns (PAMPs), like exo- and lipopolysaccharides or flagellins, which are effectively recognized by the plants’ innate immune system, various secondary metabolites, such as antibiotics or the so-called autoinducers involved in the quorum sensing response of bacteria, are additional modulators of plants’ perception of associated microbes. In Gram-negative bacteria, N-acyl homoserine lactones (AHLs) are the major quorum sensing autoinducing molecules, which have a central role in the differentiation of specific phenotypes of sessile cells, living in root-attached microcolonies or biofilm consortia. AHLs turned out to have profound effects on plant development and/or defense priming and development of systemic resistance against pathogens. AHLs have different structural modifications (e.g., short or long hydrocarbon chain residues). While the hydrophilic ones can be taken up by plants, the lipophilic stay in the roots. Different modes of plant growth promotion by these AHL types in various plants are summarized in this chapter. We hypothesize, that in the absence of pathogenic patterns, AHLs support a beneficial to symbiotic interaction with plants. In cases when plant pathogens use AHLs for virulence development, AHLs reinforce plant’s defense. Alternatively, AHL degradation activities of certain rhizosphere bacteria can be used to suppress the pathogenic attack. To foster beneficial interactions of rhizotrophs with plants, consortia of bacteria using the same autoinducers could be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Buddrus-Schiemann K, Rieger M, Mühlbauer M et al (2014) Analysis of N-acyl-homoserine lactone dynamics in continuous culture of Pseudomonas putida IsoF using ELISA and UPLC/qTOF-MS-related measurements and mathematical models. Anal Bioanal Chem 406:6373–6383

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kremmer E, Gouzy MF et al (2010a) Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal Bioanal Chem 398:2655–2667

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Buddrus-Schiemann K, Rothballer M, Krämer P, Hartmann A (2010b) Detection of quorum sensing molecules in Burkholderia cepacia culture supernatants with enzyme-linked immunosorbent assays. Anal Bioanal Chem 398:2669–2676

    Article  CAS  PubMed  Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (eds) (2010) Rhizosphere: achievements and challenges. Springer-Science-Press, Berlin

    Google Scholar 

  • Dong YH, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos T Roy Soc B 362:1201–1211

    Article  CAS  Google Scholar 

  • Eberl L (1999) N-acyl-L-homoserine lactone-mediated gene regulation in Gram-negative bacteria. Syst Appl Microbiol 22:493–506

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Frommberger M, Rothballer M et al (2007) Identification of bacterial N-acyl homoserine lactones (AHL) using ultra performance liquid chromatography (UPLC™), ultrahigh resolution mass spectrometry and in situ biosensor constructs. Anal Bioanal Chem 387:455–467

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Rothballer M, Hartmann A, Schmitt-Kopplin P (2010) Identification of bacterial autoinducers. In: Kraemer R, Jung K (eds) Bacterial signalling. Wiley Publishers, Weinheim, pp 95–111

    Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  • Gantner S, Schmid M, Dürr C et al (2006) In situ spatial scale of calling distances and population density-dependent N-acyl homoserine lactone mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    Article  CAS  PubMed  Google Scholar 

  • Götz C, Fekete A, Gebefügi I et al (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457

    Article  PubMed  Google Scholar 

  • Götz-Rösch C, Sieper T, Fekete A, Schmitt-Kopplin P, Hartmann A, Schröder P (2015) Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, S, Li D, Trost E et al (2016) Systemic response of barley to the 3-hydroxy-C10-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35. Front Plant Sci 7:1868

    Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Gantner S, Schuhegger R et al (2004) N-acyl homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of plant-microbe interactions. APS Press, St. Paul, pp 554–556

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidel A, Barazani O, Baldwin I (2010) Interaction between herbivore defense and microbial signaling: bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology 20:149–154

    Article  CAS  Google Scholar 

  • Hense BA, Kuttler C, Mueller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Reyes C, Schenk ST, Neumann C, Kogel KH, Schikora A (2014) N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol. doi:10.1111/1751-7915.12177

    PubMed  PubMed Central  Google Scholar 

  • Joseph CM, Phillips DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192

    Article  CAS  Google Scholar 

  • Kimura N (2014) Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 5:433–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biol 99:5383–5390

    Article  CAS  Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A (2011) Acidovorax radicis sp. nov., a rhizosphere bacterium isolated from wheat roots. Int J Syst Evol Microbiol 61:2589–2594

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant-Microbe Interact 25:677–683

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao M et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome. Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Montillet JL, Leonhardet N, Mondy S et al (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11(3):e1001513. doi:10.1371/journal.pbio.1001513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang YD, Liu XG, Ma YX, Chernin L, Berg G, Gao KX (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    Article  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  • Patel HK, Suarez-Moreno ZR, Degrassi G, Subramoni S, Gonzalez JF, Venturi V (2013) Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front Plant Sci 4:447

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rothballer M, Uhl J, Kunze J, Schmitt-Kopplin P, Hartmann A (2016) Detection of the bacterial quorum sensing molecules N-acyl homoserine lactones (HSL) and N-acyl-homoserines (HS) with the enzyme-linked immunosorbent assay (ELISA) and via ultrahigh performance liquid chromatrography coupled to mass spectrometry (UPLC-MS). In: Leoni L, Ramioni G (eds) Quorum sensing: methods and protokolls, Springer series methods in molecular biology. Springer International Publishing, Cham. (in press)

    Google Scholar 

  • Ryu CM (2015) Bacterial volatiles as airborne signals for plants and bacteria. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Cham, pp 53–64

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Hernandez-Reyes C, Samans B et al (2014) N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel KH (2011) N-acyl-homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora ST, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl-homoserine lactone group. Plant Mol Biol 90:605–612

    Article  CAS  PubMed  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Sieper T, Forczek S, Matucha M, Kramer P, Hartmann A, Schröder P (2013) N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol 201:545–555

    Article  PubMed  Google Scholar 

  • Singh RP, Baghel RS, Reddy CR, Jha B (2015) Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura. Front Plant Sci 6:117

    PubMed  PubMed Central  Google Scholar 

  • Song S, Jia Z, Xu J, Zhang Z, Bian Z (2011) N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem Biophys Res Commun 414:355–360

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Berlin, pp 247–256

    Google Scholar 

  • Steidle A, Sigl K, Schuhegger R et al (2001) Visualization of N-acyl-L-homoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Veliz-Vallejos DF, van Noorden GE, Yuan M, Mathesius U (2014) A Sinorhizobium meliloti-specific N-acyl-L-homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551

    Article  PubMed  PubMed Central  Google Scholar 

  • von Rad U, Klein I, Dobrev PI et al (2008) Response of Arabidopsis thaliana to N-hexanoyl-L-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    Article  CAS  Google Scholar 

  • Zarkani AA, Stein E, Rohrich CR et al (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Zhang C, Jia Z, Huang Y, Li H, Song S (2015) Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front Plant Sci 5:807

    PubMed  PubMed Central  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:732–735

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Dr. Michael Schmid, who unexpectedly died in June 2016. His contributions as commission head of the Research Unit Microbe-Plant Interactions and as expert on molecular microbial taxonomy and ecology are greatly appreciated. In addition, the fruitful cooperation with Burkhard Hense and Philippe Schmitt-Kopplin (Helmholtz Zentrum München), Leo Eberl (University of Zürich), Karl-Heinz Kogel (University of Giessen), and Adam Schikora (presently at Julius-Kühn Institute Braunschweig) over the years to discover more and more details about the perception of AHLs by plants is deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hartmann, A., Rothballer, M. (2017). Role of Quorum Sensing Signals of Rhizobacteria for Plant Growth Promotion. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_10

Download citation

Publish with us

Policies and ethics