Skip to main content

Myocardial Infarction and Exercise Training: Evidence from Basic Science

  • Chapter
  • First Online:
Book cover Exercise for Cardiovascular Disease Prevention and Treatment

Abstract

In 2016, cardiovascular disease remains the first cause of mortality worldwide [1]. Coronary artery disease, which is the most important precursor of myocardial infarction (MI), is the main component of total cardiovascular mortality, being responsible for approximately seven million of deaths [1]. In approximately 20% of infarcted patients, MI is recurrent in the first year after the event [2]. Moreover, among cardiovascular disease, coronary artery disease accounts for the most increased index of life years lost due to morbidity and/or mortality [1]. Sedentarism highly contributes to cardiovascular disease burden, especially for coronary artery disease, and is also one of the MI risk factors [3]. For many years, it was recommended to avoid physical activity after a cardiovascular event; nowadays, it is a consensus that exercise training (ET) should be part of cardiac rehabilitation programs. There is increasing evidence confirming that, when adequately prescribed and supervised, ET after MI can prevent future complications and increase the quality of life and longevity of infarcted patients [4, 5]. ET after MI follows international specialized guidelines; however, there are different protocols adopted by several societies worldwide in cardiac rehabilitation [6], and there is still lack of information on which type and regimen of exercise may be the ideal after MI, as well as how these exercises act to promote beneficial effects to cardiovascular and other organic systems. Thus, experimental studies are important contributors to elicit mechanisms behind clinical results, and to test and compare different ET protocols. Therefore, exercise prescription can be optimized, individualized, and safely practiced by patients. In this chapter, we present a brief review of MI pathophysiology followed by an updated discussion of the most relevant discoveries regarding ET and MI in basic science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McAloon CJ, Boylan LM, Hamborg T et al (2016) The changing face of cardiovascular disease 2000-2012: an analysis of the world health organization global health estimates data. Int J Cardiol 1(224):56–264

    Google Scholar 

  2. Piepoli MF, Corrà U, Dendale P et al (2016) Challenges in secondary prevention after acute myocardial infarction: a call for action. Eur J Prev Cardiol 23(18):1994–2006

    Article  PubMed  Google Scholar 

  3. Yusuf S, Hawken S, Ounpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952

    Article  PubMed  Google Scholar 

  4. La Rovere MT, Bersano C, Gnemmi M et al (2002) Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 106(8):945–949

    Article  PubMed  Google Scholar 

  5. Anderson L, Oldridge N, Thompson DR et al (2016) Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol 67(1):1–12

    Article  PubMed  Google Scholar 

  6. Price KJ, Gordon BA, Bird SR et al (2016) A review of guidelines for cardiac rehabilitation exercise programmes: is there an international consensus? Eur J Prev Cardiol 23(16):1715–1733

    Article  PubMed  Google Scholar 

  7. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488

    Article  PubMed  Google Scholar 

  8. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988

    Article  CAS  PubMed  Google Scholar 

  9. Zornoff LA, Paiva SA, Duarte DR et al (2009) Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol 92(2):150–164

    Article  PubMed  Google Scholar 

  10. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172

    Article  CAS  PubMed  Google Scholar 

  11. Mostarda C, Rodrigues B, Vane M et al (2010) Autonomic impairment after myocardial infarction: role in cardiac remodelling and mortality. Clin Exp Pharmacol Physiol 37(4):447–452

    Article  CAS  PubMed  Google Scholar 

  12. Mostarda C, Rodrigues B, Medeiros A et al (2010) Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction. Am J Transl Res 6(3):320–328

    Google Scholar 

  13. Barboza CA, Rocha LY, Mostarda CT et al (2013) Ventricular and autonomic benefits of exercise training persist after detraining in infarcted rats. Eur J Appl Physiol 113(5):1137–1146

    Article  PubMed  Google Scholar 

  14. Rodrigues B, Lira FS, Consolim-Colombo FM et al (2014) Role of exercise training on autonomic changes and inflammatory profile induced by myocardial infarction. Mediat Inflamm 2014:702473

    Google Scholar 

  15. Kumar M, Kasala ER, Bodduluru LN et al (2016) Animal models of myocardial infarction: mainstay in clinical translation. Regul Toxicol Pharmacol 76:221–230

    Article  CAS  PubMed  Google Scholar 

  16. Jorge L, Rodrigues B, Rosa KT et al (2010) Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J 32(7):904–912

    Article  PubMed  Google Scholar 

  17. Rodrigues B, Santana AA, Santamarina AB et al (2014) Role of training and detraining on inflammatory and metabolic profile in infarcted rats: influences of cardiovascular autonomic nervous system. Mediat Inflamm 2014:207131

    Google Scholar 

  18. Rodrigues F, Feriani DJ, Barboza CA et al (2014) Cardioprotection afforded by exercise training prior to myocardial infarction is associated with autonomic function improvement. BMC Cardiovasc Disord 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grans CF, Feriani DJ, Abssamra ME et al (2014) Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function. Arq Bras Cardiol 103(1):60–68

    PubMed  PubMed Central  Google Scholar 

  20. Chen Z, Siu B, Ho YS et al (1998) Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30(11):2281–2289

    Article  CAS  PubMed  Google Scholar 

  21. Wang P, Chen H, Qin H et al (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci 95(8):4556–4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu X, Wan W, Powers AS et al (2008) Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J Mol Cell Cardiol 44(1):114–122

    Article  CAS  PubMed  Google Scholar 

  23. Lobo Filho HG, Ferreira NL (2011) Experimental model of myocardial infarction induced by isoproterenol in rats. Rev Bras Cir Cardiovasc 26(3):469–476

    Article  PubMed  Google Scholar 

  24. American College of Sports Medicine Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30(6):975–991

    Google Scholar 

  25. Artinian NT, Fletcher GF, Mozaffarian D et al (2010) Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults a scientific statement from the American Heart Association. Circulation 122(4):406–441

    Article  PubMed  Google Scholar 

  26. Kraus WE, Bittner V, Appel L et al (2015) The National Physical Activity Plan: a call to action from the American Heart Association a science advisory from the American Heart Association. Circulation 131(21):1932–1940

    Article  PubMed  Google Scholar 

  27. Bito V, De Waard MC, Biesmans L et al (2010) Early exercise training after myocardial infarction prevents contractile, but not electrical remodeling or hypertrophy. Cardiovasc Res 86(1):72–81

    Article  CAS  PubMed  Google Scholar 

  28. Puhl SL, Müller A, Wagner M et al (2015) Exercise limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 309(2):345–359

    Article  Google Scholar 

  29. Westman PC, Lipinski MJ, Luger D et al (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060

    Article  PubMed  Google Scholar 

  30. Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98(8):794–799

    Article  CAS  PubMed  Google Scholar 

  31. Frederico MJ, Justo SL, Da Luz G et al (2009) Exercise training provides cardioprotection via a reduction in reactive oxygen species in rats submitted to myocardial infarction induced by isoproterenol. Free Radic Res 43(10):957–964

    Article  CAS  PubMed  Google Scholar 

  32. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81(3):457–464

    Article  CAS  PubMed  Google Scholar 

  33. Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bozi LHM, dos Santos IRCM, Baldo MP et al (2013) Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats. Clinics 68(4):549–556

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yengo CM, Zimmerman SD, McCormick RJ et al (2012) Exercise training post-MI favorably modifies heart extracellular matrix in the rat. Med Sci Sports Exerc 44(6):1005–1012

    Article  CAS  PubMed  Google Scholar 

  36. Melo SF, Fernandes T, Baraúna VG et al (2014) Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell Physiol Biochem 33(3):657–669

    Article  CAS  PubMed  Google Scholar 

  37. Freimann S, Scheinowitz M, Yekutieli D et al (2005) Prior exercise training improves the outcome of acute myocardial infarction in the rat: heart structure, function, and gene expression. J Am Coll Cardiol 45(6):931–938

    Article  PubMed  Google Scholar 

  38. Dayan A, Feinberg MS, Holbova R et al (2005) Swimming exercise training prior to acute myocardial infarction attenuates left ventricular remodeling and improves left ventricular function in rats. Ann Clin Lab Sci 35(1):73–78

    PubMed  Google Scholar 

  39. La Rovere MT, Bigger JT Jr, Marcus FI et al (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial infarction) investigators. Lancet 351(9101):478–484

    Article  PubMed  Google Scholar 

  40. Chen T, Cai MX, Li YY et al (2014) Aerobic exercise inhibits sympathetic nerve sprouting and restores β-adrenergic receptor balance in rats with myocardial infarction. PLoS One 9(5):e97810

    Article  PubMed  PubMed Central  Google Scholar 

  41. Coelho-Júnior HJ, de Freitas VGG, Uchida MC et al (2016) Efeito do treinamento resistido nas variáveis pressóricas de idosos: uma revisão crítica. Suplem Rev Soc Cardiol Estado de São Paulo 26(1):21–28

    Google Scholar 

  42. Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lisabeth L, Bushnell C (2012) Menopause and stroke: an epidemiologic review. Lancet Neurol 11(1):82–91

    Article  PubMed  PubMed Central  Google Scholar 

  44. Casanova G, Pritzer PM (2007) Aspectos fisiopatológicos: estrogênios, menopausa e terapia hormonal. Rev Soc Bras Hipertensão 10(4):131–134

    Google Scholar 

  45. Hildreth KL, Kohrt WM, Moreau KL (2014) Oxidative stress contributes to large elastic arterial stiffening across the stages of the menopausal transition. Menopause 2(6):624–632

    Article  Google Scholar 

  46. Flores LJ, Figueroa D, Sanches IC et al (2010) Effects of exercise training on autonomic dysfunction management in an experimental model of menopause and myocardial infarction. Menopause 17(4):712–717

    PubMed  Google Scholar 

  47. Almeida AS, Claudio ER, Mengal V et al (2014) Exercise training reduces cardiac dysfunction and remodeling in ovariectomized rats submitted to myocardial infarction. PLoS One 9(12):e115970

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zanesco A, Zaros PR (2009) Exercício físico e menopausa. Rev Bras Ginecol Obstet 31(5):254–261

    Article  PubMed  Google Scholar 

  49. Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88(11):1322–1335

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dokken BB (2008) The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr 21(3):160–165

    Article  Google Scholar 

  51. Rodrigues B, Mostarda CT, Jorge L et al (2013) Impact of myocardial infarction on cardiac autonomic function in diabetic rats. J Diabetes Complicat 27(1):16–22

    Article  PubMed  Google Scholar 

  52. Rodrigues B, Jorge L, Mostarda CT et al (2012) Aerobic exercise training delays cardiac dysfunction and improves autonomic control of circulation in diabetic rats undergoing myocardial infarction. J Card Fail 18(9):734–744

    Article  PubMed  Google Scholar 

  53. Poirier P, Giles TD, Bray GA et al (2006) Obesity and cardiovascular disease pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26(5):968–976

    Article  CAS  PubMed  Google Scholar 

  54. Barbosa VA, Luciano TF, Vitto MF et al (2012) Exercise training plays cardioprotection through the oxidative stress reduction in obese rats submitted to myocardial infarction. Int J Cardiol 157(3):422–424

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana C. Moraes-Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Moraes-Silva, I.C., Rodrigues, B., Coelho-Junior, H.J., Feriani, D.J., Irigoyen, MC. (2017). Myocardial Infarction and Exercise Training: Evidence from Basic Science. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_9

Download citation

Publish with us

Policies and ethics