Skip to main content

Atomistic Modeling and Simulation for Solving Gas Extraction Problems

  • Chapter
  • First Online:

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

Proof-of-concept results are presented on the application of molecular modeling and simulation to the gas extraction problems. Both hydrocarbon mixtures and gas hydrates in porous media are considered. Retrograde gas condensation reduces the amount of recoverable gas in reservoirs and can lead to jamming of wells. For example, the authors [1] developed a model of two-phase gas filtration through porous media that can reproduce the jamming. The model can describe gas flow in soil of reservoir if both a phase diagram of the gas mixture and permeability of pores to gaseous and liquid phases are known. Molecular dynamics simulations are used to study phase diagrams of binary hydrocarbon mixtures at temperatures between the critical points of pure components. The phase diagrams in free space and in slit pores are calculated. Effects of wall–gas interaction on the phase diagram are estimated. The data obtained from molecular simulations can be used to improve the hydrodynamic filtration model and to optimize the natural gas and gas condensate extraction conditions. Effects of pore structure on the phase stability of gas hydrates and on the diffusion of guest molecules are studied by means of molecular modeling. The anisotropic diffusion is found in hydrogen hydrates. Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on nanosecond timescale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zaichenko, V.M., Maikov, I.L., Torchinskii, V.M., Shpil’rain, E.E.: Simulation of processes of filtration of hydrocarbons in a gas-condensate stratum. High Temp. 47, 669-674 (2009)

    Google Scholar 

  2. Direktor, L.B., Zaichenko, V.M., Maikov, I.L., et al.: Theoretical and experimental studies of hydrodynamics and heat exchange in porous media. High Temp. 48, 887–895 (2010)

    Article  CAS  Google Scholar 

  3. Sage, B.H., Hicks, B.L., Lacey, W.N.: Phase equilibria in hydrocarbon systems. The methane-n-butane system in the two-phase region. Ind. Eng. Chem. 32, 1085 (1940)

    Article  CAS  Google Scholar 

  4. Muhlbauer, A.: Phase Equilibria: Measurement and Computation. CRC press (1997)

    Google Scholar 

  5. Kahre, L.C.: Low-temperature K data for methane-n-butane. J. Chem. Eng. Data 19, 67–71 (1974)

    Article  CAS  Google Scholar 

  6. Elliott, D.G., Chen, R.J.J., Chappelear, P.S., Kobayashi, R.: Vapor-liquid equilibrium of methane-n-butane system at low temperatures and high pressures. J. Chem. Eng. Data 19, 71–77 (1974)

    Article  Google Scholar 

  7. Norman, G.E., Stegailov, V.V.: Stochastic theory of the classical molecular dynamics method. Math. Models Comput. Simul. 5, 305–333 (2013)

    Article  Google Scholar 

  8. Rapaport, D.C.: The art of molecular dynamics simulation, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  9. Frenkel, D., Smit, B.: Understanding molecular simulation: from algorithms to applications. Academic Press (2002)

    Google Scholar 

  10. Norman, G.E., Filinov, V.S.: Investigation of phase transitions by a Monte-Carlo method. High Temp. 7, 216–222 (1969)

    Google Scholar 

  11. Panagiotopoulos, A.Z.: Direct determination of phase coexistence properties of fluids by Monte Carlo simulations in a new ensemble. Mol. Phys. 61, 813–826 (1987)

    Article  CAS  Google Scholar 

  12. Kofke, D.A., Glandt, E.D.: Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol. Phys. 64, 1105–1131 (1988)

    Article  CAS  Google Scholar 

  13. Mehta, M., Kofke, D.A.: Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49, 2633–2645 (1994)

    Article  CAS  Google Scholar 

  14. Kaneko, T., Mima, T., Yasuoka, K.: Phase diagram of Lennard-Jones fluid confined in slit pores. Chem. Phys. Lett. 490, 165–171 (2010)

    Article  CAS  Google Scholar 

  15. Fomin, YuD: Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores. J. Comput. Chem. (2013). doi:10.1002/jcc.23429

    Google Scholar 

  16. Fomin, YuD, Tsiok, E.D., Ryzhov, V.N.: The behavior of benzene confined in single wall carbon nanotube. J. Comput. Chem. (2015). doi:10.1002/jcc.23872

    Google Scholar 

  17. Fomin, YuD, Tsiok, E.D., Ryzhov, V.N.: The behavior of cyclohexane confined in slit carbon nanopore. J. Chem. Phys. 143, 184702 (2015)

    Article  Google Scholar 

  18. Rudyak, V.Ya., Belkin, A.A., Egorov, V.V., Ivanov, D.A.: About fluids structure in microchannels. Int. J. Multiphys. 5, 145–155 (2011)

    Google Scholar 

  19. Rudyak, V.Ya., Belkin, A.A.: Fluid viscosity under confined conditions. Doklady Phys. 59, 604–606 (2014)

    Google Scholar 

  20. Johnston, K., Harmandaris, V.: Properties of benzene confined between two Au(111) surfaces using a combined density functional theory and classical molecular dynamics approach. J. Phys. Chem. C 115, 14707–14717 (2011)

    Article  CAS  Google Scholar 

  21. Moustafa, S.G., Schulz, A.J., Kofke, D.A.: Effects of finite size and proton disorder on lattice-dynamics estimates of the free energy of clathrate hydrates. Ind. Eng. Chem. Res. 54, 4487–4496 (2015)

    Article  CAS  Google Scholar 

  22. Skripov, V.P., Faizullin, M.Z.: Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity. Wiley-VCH, Berlin-Weinheim (2006)

    Book  Google Scholar 

  23. Strauss, H.L., Chen, Z., Loong, C.-K.: The diffusion of H2 in hexagonal ice at low temperatures. J. Chem. Phys. 101, 7177 (1994)

    Article  Google Scholar 

  24. Ildyakov, A.V., Manakov, A.Y.: Solubility of hydrogen in ice Ih at pressures up to 8 MPa. Int. J. Hydrogen Energy 39, 18958–18961 (2014)

    Article  CAS  Google Scholar 

  25. Alavi, S., Ripmeester, J.A.: Hydrogen-gas migration through clathrate hydrate cages. Angew. Chem. Int. Ed. Engl. 46, 6102–6105 (2007)

    Article  CAS  Google Scholar 

  26. Frankcombe, T.J., Kroes, G.-J.: Molecular dynamics simulations of type-sII hydrogen clathrate hydrate close to equilibrium conditions. J. Phys. Chem. C 111, 13044 (2007)

    Article  CAS  Google Scholar 

  27. Iwai, Y., Hirata, M.: Molecular dynamics simulation of diffusion of hydrogen in binary hydrogen–tetrahydrofuran hydrate. Mol. Simul. 38, 333–340 (2012)

    Article  CAS  Google Scholar 

  28. Gorman, P.D., English, N.J., MacElroy, J.M.D.: Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J. Chem. Phys. 136, 044506 (2012)

    Article  Google Scholar 

  29. Cao, H., English, N.J., MacElroy, J.M.D.: Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J. Chem. Phys. 138, 094507 (2013)

    Article  Google Scholar 

  30. Tung, Y.-T., Chen, L.-J., Chen, Y.-P., Lin, S.-T.: The growth of structure I methane hydrate from molecular dynamics simulations. J. Phys. Chem. B. 114, 10804–10813 (2010)

    Article  CAS  Google Scholar 

  31. Conde, M.M., Vega, C.: Determining the three-phase coexistence line in methane hydrates using computer simulations. J. Chem. Phys. 133, 064507 (2010)

    Article  CAS  Google Scholar 

  32. Abascal, J.L.F., Sanz, E., García Fernández, R., Vega, C.: A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122, 234511 (2005)

    Google Scholar 

  33. Jensen, L., Thomsen, K., von Solms, N., et al.: Calculation of liquid water−hydrate−methane vapor phase equilibria from molecular simulations. J. Phys. Chem. B 114, 5775–5782 (2010)

    Article  CAS  Google Scholar 

  34. Smirnov, G.S., Stegailov, V.V.: Melting and superheating of sI methane hydrate: molecular dynamics study. J. Chem. Phys. 136, 044523 (2012)

    Article  Google Scholar 

  35. Abascal, J.L.F., Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005)

    Article  CAS  Google Scholar 

  36. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998)

    Article  CAS  Google Scholar 

  37. Cornell, W.D., Cieplak, P., Bayly, C.I., et al.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

  38. Chen, B., Siepmann, J.I.: Transferable potentials for phase equilibria. 3. explicit-hydrogen description of normal alkanes. J. Phys. Chem. B 103, 5370–5379 (1999)

    Article  CAS  Google Scholar 

  39. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992)

    Article  CAS  Google Scholar 

  40. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  41. Shinoda, W., Shiga, M., Mikami, M.: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 69, 134103 (2004)

    Article  Google Scholar 

  42. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  43. Docherty, H., Galindo, A., Vega, C., Sanz, E.: A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. J. Chem. Phys. 125, 074510 (2006)

    Article  CAS  Google Scholar 

  44. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  45. Raitza, T., Reinholz, H., Röpke, G., et al.: Laser excited expanding small clusters: single time distribution functions. Contrib. Plasma Phys. 49, 496–506 (2009)

    Article  CAS  Google Scholar 

  46. Morozov, I.V., Kazennov, A.M., Bystryi, R.G., et al.: Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs. Comp. Phys. Comm. 182, 1974–1978 (2011)

    Article  CAS  Google Scholar 

  47. Dyadin, Y.A., Aladko, E.Y.: In: Monfort, J. (ed.) Proceedings of the Second International Conference on Natural Gas Hydrates, pp. 67–70 (1996)

    Google Scholar 

  48. Smirnov, G.S., Stegailov, V.V.: Toward determination of the new hydrogen hydrate clathrate structures. J. Phys. Chem. Lett. 4, 3560–3564 (2013)

    Article  CAS  Google Scholar 

  49. Borah, B., Zhang, H., Snurr, R.Q.: Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chem. Eng. Sci. 124, 135–143 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Russian Science Foundation grant 14-50-00124. The authors are thankful to prof. V.M. Zaichenko, who paid our attention to connection of our nucleation study with natural gas condensates modeling and to Drs V.V. Kachalov and V.M. Torchinskii for their interest to the work and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Pisarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Norman, G.E., Pisarev, V.V., Smirnov, G.S., Stegailov, V.V. (2016). Atomistic Modeling and Simulation for Solving Gas Extraction Problems. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_9

Download citation

Publish with us

Policies and ethics