Skip to main content

Wheat-Puccinia striiformis Interactions

  • Chapter
Book cover Stripe Rust

Abstract

Owing to the scientific and economic importance, the antagonistic wheat-Puccinia striiformis f. sp. tritici (Pst) pathosystem has been a focus of research over the past five decades. With the recent discovery of barberry as alternate hosts, Pst has been confirmed to be heteroecious, and the roles of the alternate hosts in disease epidemiology and pathogen variation have been studied. Meanwhile, considerable effort has been taken and significant progress has been made to unravel the wheat-Pst interactions. Histological and cytological studies have provided basic information on infection strategies used by the pathogen and defense responses from the host during wheat-Pst interactions and identified cellular components involved in the interactions. Physiological studies demonstrated the essential changes in Pst infected wheat leaves, unraveling the damage of the pathogen and the countermeasures of the host plants. Transcriptome and genome sequencing has revealed the molecular features and dynamics of the wheat-Pst pathosystem. Extensive molecular analyses have led to the identification of major components in the wheat resistance responses. Studies of wheat-Pst interactions have now entered a new phase in which cellular and molecular approaches are being used. In this chapter, we present the achievements made in the histological and cytological study of wheat-Pst interactions as well as physiological plant pathology. Furthermore, the new insights into wheat immunity provided by the sequence resources and advanced genomic technologies were discussed. Overall, this chapter focuses on the cellular biology of the stripe rust fungus and the wheat-Pst interactions, and integrates the emerging data from molecular analyses with the histocytological observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Attia MA, Wang X, Al-Attala MN, Xu Q, Zhan G, Kang Z. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat-stripe rust fungus interaction. Physiol Plant. 2015;156:262–77.

    PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis, analysis of the cup shaped cotyledon mutant. Plant Cell. 1997;9:841–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Attala MN, Wang X, Abou-Attia MA, Duan X, Kang Z. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Mol Biol. 2014;84:589–603.

    CAS  PubMed  Google Scholar 

  • Albrecht V, Weinl S, Balzevic D, D’Angelo C, Batistic O, Kolukisaouglu Ü, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J. 2003;36:457–70.

    CAS  PubMed  Google Scholar 

  • Ali S, Gladieux P, Rahman H, Saqib MS, Fiaz M, Ahmad H, Leconte M, Gautier A, Justesen AF, HovmØller MS, Enjalbert J, Vallavieille-Pope C. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f. sp. tritici. Mol Ecol. 2014;23:603–17.

    CAS  PubMed  Google Scholar 

  • Allen RF. Cytological studies of infection of Baart, Kanred, and Mindum wheats by Puccinia graminis tritici. Span J Agric Res. 1923;26:571–604.

    Google Scholar 

  • Allen RE. A cytological study of Puccinia glumarum on Bromus marginatus and Triticum vulgare. J Agric Res. 1928;36:487–513.

    Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100:2992–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonin W, Holroyd C, Fasshauer D, Pabst S, von Mollard GF, Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 2000;19:6453–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    CAS  PubMed  Google Scholar 

  • Aranda MA, Escaler M, Wang D, Maule AJ. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Sci Acad USA. 1996;93:15289–93.

    CAS  Google Scholar 

  • Artemenko EN, Umnov AM, Chkanikov DI. Changes in the level of indolyl-3-acetic acid and possible paths of it regulation in leaves of wheat infected with stem rust. Sov Plant Physiol (Engl Transl). 1980;27:447–51.

    Google Scholar 

  • Atkinson GC. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics. 2015;16:78.

    PubMed  PubMed Central  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT. Syringolide 1 Triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol. 1996;112:297–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayliffe M, Devilla R, Mago R, White R, Talbot M, Pryor A, Leung H. Nonhost resistance of rice to rust pathogens. Mol Plant-Microbe Interact. 2011a;24:1143–55.

    CAS  PubMed  Google Scholar 

  • Ayliffe M, Jin Y, Kang ZS, Persson M, Steffenson B, Wang SP, Leung H. Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica. 2011b;179:33–40.

    Google Scholar 

  • Ayliffe M, Singh D, Park R, Moscou M, Pryor T. Infection of Brachypodium distachyon with selected grass rust pathogens. Mol Plant-Microbe Interact. 2013;26:946–57.

    CAS  PubMed  Google Scholar 

  • Ayres PG. Interactions between environmental stress injury and biotie disease physiology. Annu Rev Phytopathol. 1984;22:53–75.

    CAS  Google Scholar 

  • Azinheira GH, Maria DCS, Talhinhas P, Medeira C, Maia I, Petitot A-S, Fernandez D. Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany. 2010;88:621–9.

    Google Scholar 

  • Babaeizad V, Imani J, Kogel K-H, Eichmann R, Hückelhoven R. Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungalpathogens. Theor Appl Genet. 2009;118:455–63.

    CAS  PubMed  Google Scholar 

  • Baka ZA, Larous L, Losel DM. Distribution of ATPase activity at the host–pathogen interfaces of rust infections. Physiol Mol Plant Pathol. 1995;47:67–82.

    CAS  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in regulating petal number in Arabidopsis. Curr Biol. 2005;15:303–15.

    CAS  PubMed  Google Scholar 

  • Bancal MO, Hansart A, Sache I, Bancal P. Modeling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen. Ann Bot. 2012;110:113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao YM, Sun SJ, Li M, Li L, Cao WL, Luo J, et al. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa L.). Gene. 2012;504:238–44.

    CAS  PubMed  Google Scholar 

  • Barak M, Trebitsh T. A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.). Plant Mol Biol. 2007;65:829–37.

    CAS  PubMed  Google Scholar 

  • Bariana HS, McIntosh RA. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar ‘Hybridede-Bersee’. Plant Breed. 1995;114:485–91.

    Google Scholar 

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    CAS  PubMed  Google Scholar 

  • Batistič O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta. 2004;219:915–24.

    PubMed  Google Scholar 

  • Batistič O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophy Acta (BBA) – Mol Cell Res. 2009;1793:985–92

  • Beck M, Heard W, Mbengue M, Robatzek S. The INs and OUTs of pattern recognition receptors at the cell surface. Curr Opin Plant Biol. 2012;15:367–74.

    CAS  PubMed  Google Scholar 

  • Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R. PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 2003;132:1623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin A, Djurle A, Samils B, Yuen J. Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102:1006–12.

    PubMed  Google Scholar 

  • Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 2010;20:187–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beßer K, Jarosch B, Langen G, Kogel KH. Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Mol Plant Pathol. 2001;1:277–86.

    Google Scholar 

  • Bhattacharya PK, Naylor JM, Shaw M. Nucleic acid and protein changes in wheat leaf nuclei during rust infection. Science. 1965;150:1605–7.

    CAS  PubMed  Google Scholar 

  • Bhattacharya PK, Shaw M, Naylor JM. The physiology of host–parasite relations. XIX. Further observations on nucleoprotein changes in wheat leaf nuclei during rust infection. Can J Bot. 1968;46:11–6.

    CAS  Google Scholar 

  • Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane compartment organization. Nature. 2001;409:839–41.

    CAS  PubMed  Google Scholar 

  • Boller T. Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC, editors. The plant hormone ethylene. Boca Raton: CRC Press; 1991. p. 293–314.

    Google Scholar 

  • Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 2007;7:4.

    PubMed  PubMed Central  Google Scholar 

  • Botër M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell. 2007;19:3791–804.

    PubMed  PubMed Central  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP. Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA. 2010;107:14502–7

    Google Scholar 

  • Bowles DJ. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907.

    CAS  PubMed  Google Scholar 

  • Bozkurt O, Unver T, Akkaya MS. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol Mol Plant Pathol. 2008;71:251–9.

    Google Scholar 

  • Bozkurt O, Mcgrann G, MacCormack R, Boyd LA, Akkaya MS. Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Mol Plant Pathol. 2010;11:625–40.

    CAS  PubMed  Google Scholar 

  • Brown W. The physiology of host-parasite relations. Bot Rev. 1936;2:236–81.

    Google Scholar 

  • Burstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 2007;49:238–49.

    PubMed  Google Scholar 

  • Buscaill P, Rivas S. Transcriptional control of plant defence responses. Curr Opin Plant Biol. 2014;20:35–46.

    CAS  PubMed  Google Scholar 

  • Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Biol. 1995;46:95–122.

    CAS  Google Scholar 

  • Bushnell WR. Symptom development in mildewed and rusted tissues. In: Mirocha CJ, Uritani I, editors. The dynamic role of molecular constituents in plant–parasite interaction. St Paul: American Phytopathological Society Press; 1967. p. 21–39.

    Google Scholar 

  • Bushnell WR. Patterns in the growth, oxygen uptake, and nitrogen content of single colonies of wheat stem rust on wheat leaves. Phytopathology. 1970;60:92–9.

    Google Scholar 

  • Calonge FD. Chlorophyll and total nitrogen in barley rust infection. Trans Br Mycol Soc. 1967;50:397–401.

    Google Scholar 

  • Caltrider PG, Ramachandran S, Gottlieb D. Metabolism during germination and function of glyoxylate enzymes in uredospores of rust fungi. Phytopathology. 1963;53:86–92.

    CAS  Google Scholar 

  • Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 2013;199:212–27.

    CAS  PubMed  Google Scholar 

  • Cao HN, Liu B, Liu TG, Gao L, Chen WQ. Cloning of a heat shock protein gene hsp70 of Puccinia striiformis f.sp.tritici and its expression in response to high-temperature stress. Plant Prot. 2015;41:19–24.

    Google Scholar 

  • Capozzi F, Casadei F, Luchinat C. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem. 2006;11:949–62.

    CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D, Fröhlich K, Kroemer G, Madeo F. Metacaspases are caspases. Doubt no more. Cell Death Differ. 2010;17:377–8.

    CAS  PubMed  Google Scholar 

  • Chanda B, Venugopal SC, Kulshrestha S, Navarre DA, Downie B, Vaillancourt L, Kachroo A, Kachroo P. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiol. 2008;147:2017–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao Q-M, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P. Glycerol-3- phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet. 2011;43:421–7.

    CAS  PubMed  Google Scholar 

  • Chang Q, Liu J, Wang QL, Han LN, Liu J, Li M. Huang LL, Yang JR, Kang ZS. The effect of Puccinia striiformis f. sp. tritici on the levels of water soluble carbohydrates and the photosynthetic rate in wheat leaves. Physiol Mol Plant Pathol. 2013;84:131–7.

    Google Scholar 

  • Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89:1133–44.

    CAS  PubMed  Google Scholar 

  • Chen XM. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol. 2005;27:314–37.

    Google Scholar 

  • Chen XM. High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci. 2013;4:608–27.

    Google Scholar 

  • Chen XM, Line RF. Gene-Action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology. 1995;85:567–72.

    Google Scholar 

  • Chen XM, Line RF, Jones SS. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology. 1995;85:1362–7.

    Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM. Ethylene insensitive3 and ethylene insensitive3-like1 repress salicylic acid induction deficient2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell. 2009;21:2527–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM, Penman L, Wan AM, Cheng P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol. 2010;32:315–33.

    Google Scholar 

  • Chen XM, Wang MN, Wan AM, Cheng P, Cheng JJ. Sexual or asexual reproduction, which one is more important for stripe rust. In: Chen W-Q (ed) Disease risk and food security. Proceedings of the 13th international Cereal Rust and Powdery Mildew Conference. Beijing: China Agricultural Science and Technology Press; 2012. pp 36–37

    Google Scholar 

  • Chen XM, Coram T, Huang XL, Wang MN, Dolezal A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr Genomics. 2013;14:111–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WQ, Wellings C, Chen XM, Kang ZS, Liu TG. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol. 2014;15:433–46.

    PubMed  Google Scholar 

  • Chen YE, Cui JM, Su YQ, Yuan S, Yuan M, Zhang HY. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front Plant Sci. 2015;6:779.

    PubMed  PubMed Central  Google Scholar 

  • Cheng YL, Zhang HC, Yao JN, Wang XJ, Xu JR, Han QM, Wei GR, Huang LL, Kang ZS. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol. 2012;12:96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng YL, Zhang HC, Yao JN, Han QM, Wang XJ, Huang LL, Kang ZS. Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust. Plant Physiol Biochem. 2013;62:11–8.

    CAS  PubMed  Google Scholar 

  • Cheng P, Chen XM, See D. Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology. 2016;106:362–71.

    CAS  PubMed  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell. 2003;15:1833–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung DSM, Willetts HJ. Changes in proteins and isoenzymes in leaves of wheat when infected by stem rust. Arch Microbiol. 1973;91:365–72.

    CAS  Google Scholar 

  • Chigrin VV, Chumakovskii NN, Zhigalkina TE. Dynamics of ethylene production in the pathogenesis of wheat stem rust. Mikol Fitopatol.1978;12:141–5 (in Russian, transl. by DH Casper)

    Google Scholar 

  • Choi J, Choi D, Lee S, Ryu CM, Hwang I. Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 2011;16:388–94.

    CAS  PubMed  Google Scholar 

  • Chong J, Harder DE, Rohringer R. Cytochemical studies on Puccinia graminis f. sp. tritici in a compatible wheat host. I. Walls of intercellular hyphal cells and haustorium mother cells. Can J Bot. 1985;63:1713–24.

    CAS  Google Scholar 

  • Chuck G, Candela H, Hake S. Big impacts by small RNAs in plant development. Curr Opin Plant Biol. 2009;12:81–6.

    CAS  PubMed  Google Scholar 

  • Cloutier S, McCallum B, Loutre C, Banks T, Wicker T, Feuillet C, Keller B, Jordan M. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol. 2007;65:93–106.

    CAS  PubMed  Google Scholar 

  • Coram TE, Settles ML, Chen XM. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008a;9:479–93.

    CAS  PubMed  Google Scholar 

  • Coram TE, Wang MN, Chen XM. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008b;9:157–69.

    CAS  PubMed  Google Scholar 

  • Coram TE, Huang XL, Zhan GM, Settles ML, Chen XM. Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Funct Integr Genomics. 2010;10:383–92.

    CAS  PubMed  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind JS, Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996;381:800–3.

    CAS  PubMed  Google Scholar 

  • Dai Y, Wensink PC, Abeles RH. One protein, two enzymes. J Biol Chem. 1999;274:1193–5.

    CAS  PubMed  Google Scholar 

  • Daly JM, Knoche HW. Hormonal involvement in metabolism of host–parasite interactions. In: Friend J, Threlfall DR, editors. Biochemical sspects of plant–parasite relationships. New York: Academic Press; 1976. p. 117–33.

    Google Scholar 

  • Daly JM, Knoche HW, Wiese MV. Carbohydrate and lipid metabolism during Germination of uredospores of Puccinia graminis tritici. Plant Physiol. 1967;42:1633–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daly JM, Ludden P, Seevers P. Biochemical comparisons of resistance to wheat stem rust disease controlled by the Sr6 or Sr11 alleles. Physiol Plant Pathol. 1971;1:397–407.

    CAS  Google Scholar 

  • Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411:826–33.

    CAS  PubMed  Google Scholar 

  • de Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999;11:1–12.

    CAS  PubMed  Google Scholar 

  • Deikman J. Molecular mechanisms of ethylene regulation of gene transcription. Physiol Plant. 1997;100:561–6.

    CAS  Google Scholar 

  • Dekhuijzen HM, Staples RC. Mobilization factors in uredospores and bean leaves infected with bean rust fungus. Contrib Boyce Thompson Inst. 1968;24:39–52.

    CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A. 2001;98:13454–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson JG, Syamananda R, Flangas AL. The genetic approach to the physiology of parasitism of the corn rust pathogens. Am J Bot. 1959;46:614–20.

    Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL. Arabidopsis mutants simulating disease resistance response. Cell. 1994;77:565–77.

    CAS  PubMed  Google Scholar 

  • Dmochowska-Boguta M, Alaba S, Yanushevska Y, Piechota U, Lasota E, Nadolska-Orczyk A, Karlowski WM, Orczyk W. Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genomics. 2015;16:742.

    PubMed  PubMed Central  Google Scholar 

  • Doodson JK, Manners JG, Myers A. Some effects of yellow rust (Puccinia striiformis) on 14carbon assimilation and translocation in wheat. J Exp Bot. 1965;16:304–17.

    CAS  Google Scholar 

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. 2003;83:433–73.

    CAS  PubMed  Google Scholar 

  • Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX. Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry. 2009;74:1–11.

    CAS  PubMed  Google Scholar 

  • Duan YH, Guo J, Wang SJ, Yu XM, Huang LL, Kang AS. Cloning and expression analysis of alanine amino transferase gene TaAlaAT1 in wheat infected with stripe rust fungus. Acta Phys Sin. 2009;39:139–46. (in Chinese)

    Google Scholar 

  • Duan YH, Guo J, Ding K, Wang SJ, Zhang H, Dai XW, Chen YY, Govers F, Huang LL, Kang ZS. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol Biol Rep. 2011;38:301–7.

    CAS  PubMed  Google Scholar 

  • Duan XY, Wang XJ, Fu YP, Tang CL, Li XR, Cheng YL, Feng H, Huang LL, Kang ZS. TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Mol Plant Pathol. 2013a;14:728–39.

    CAS  PubMed  Google Scholar 

  • Duan YH, Guo J, Shi XX, Guan XN, Liu FR, Bai PF, Huang LL, Kang ZS. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Rep. 2013b;32:273–83.

    CAS  PubMed  Google Scholar 

  • Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A. 2011;108:9166–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duval M, Hsieh T-F, Kim SY, Thomas TL. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol. 2002;50:237–48.

    CAS  PubMed  Google Scholar 

  • Dyck PL. Genetics of adult-plant leaf rust resistance in “Chinese Spring” and “Sturdy” wheats. Crop Sci. 1991;31:309.

    Google Scholar 

  • Edreva A. Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol. 2005;31:105–24.

    CAS  Google Scholar 

  • Ehrlich MA, Ehrlich HG. Fine structure of Puccinia graminis and the transfer of C14 from uredospores to Triticum vulgare. In: Akai S, Ouchi S, editors. Morphological and biochemical events in plant–parasite interaction: Phytopathological Society of Japan; 1971. p. 279–307.

    Google Scholar 

  • Eichmann R, Dechert C, Kogel K-H, Hückelhoven R. Transient over-expression of barley BAX inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f. sp. hordei. Mol Plant Pathol. 2006;7:543–52.

    CAS  PubMed  Google Scholar 

  • El Kasmi F, Krause C, Hiller U, Stierhof YD, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot AA, Jürgens G. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol Biol Cell. 2013;24:1593–601.

    PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Dodds PN, Lawrence GJ. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu Rev Phytopathol. 2007;45:289–306.

    CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic Nicotiana benthamiana confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 2007;225:1255–64.

    CAS  PubMed  Google Scholar 

  • Eltelib HA, Badejo AA, Fujikawa Y, Esaka M. Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J Plant Physiol. 2011;168:619–27.

    CAS  PubMed  Google Scholar 

  • Enoksson M, Salvesen G. Metacaspases are not caspases – always doubt. Cell Death Differ. 2010;17:1221.

    CAS  PubMed  Google Scholar 

  • Eriksson J. Über die Spezialisierung des Parasitsimus bei den Getreiderostpilzen. Ber Dtsch Getreiderostpilze Z Pflanzenkr. 1894;4:197–203.

    Google Scholar 

  • Fadeel B, Zhivotovsky B, Orrenius S. All along the watch tower: on the regulation of apoptosis regulators. FASEB J. 1999;13:1647–57.

    CAS  PubMed  Google Scholar 

  • Fan J, Doerner P. Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no. Curr Opin Plant Biol. 2012;15:400–6.

    CAS  PubMed  Google Scholar 

  • Farkas GL, Király Z. Amide metabolism in wheat leaves infected with stem rust. Physiol Plant. 1961;14:344–53.

    CAS  Google Scholar 

  • Farrakh S, Wang MN, Chen XM. Expression profiling of pathogenesis-related protein genes in wheat resistance to the stripe rust pathogen (Puccinia striiformis f. sp. tritici). Phytopathology. 2016;S4:197

    Google Scholar 

  • Feng H, Wang X, Sun Y, Wang X, Chen X, Guo J, Duan Y, Huang L, Kang Z. Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Mol Biol Rep. 2011;38:3857–66.

    CAS  PubMed  Google Scholar 

  • Feng H, Zhang Q, Li HY, Wang XJ, Wang XD, Duan XY, Wang B, Kang ZS. vsiRNAs derived from the miRNA-generating sites of pri-taemiR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of TaMyb3 expression. Plant Physiol Biochem. 2013a;68:90–5.

    CAS  PubMed  Google Scholar 

  • Feng H, Zhang Q, Wang QL, Wang XJ, Liu J, Li M, Huang LL, Kang ZS. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol. 2013b;83:433–43.

    CAS  PubMed  Google Scholar 

  • Feng H, Duan XY, Zhang Q, Li XR, Wang B, Huang LL, Wang XJ, Kang ZS. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol. 2014a;15:284–96.

    CAS  PubMed  Google Scholar 

  • Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L, Kang Z. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiol Biochem. 2014b;76:7–16.

    CAS  PubMed  Google Scholar 

  • Feng H, Wang XJ, Zhang Q, Fu YP, Feng CX, Wang B, Huang LL, Kang ZS. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim Biophys Acta (BBA)-Gene Regulat Mech. 2014c;1839:1–12

    Google Scholar 

  • Feng H, Wang B, Zhang Q, Fu YP, Huang LL, Wang XJ, Kang ZS. Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust. Front Plant Sci. 2015;6:469.

    PubMed  PubMed Central  Google Scholar 

  • Feng H, Wang T, Feng CX, Zhang Q, Zhang XM, Huang LL, Wang XJ, Kang ZS. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici. Physiol Plant. 2016;157:95–107.

    CAS  PubMed  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 1997;11:45–52.

    CAS  PubMed  Google Scholar 

  • Feuillet C, Reuzeau C, Kjellbom P, Keller B. Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat. Plant Mol Biol. 1998;37:943–53.

    CAS  PubMed  Google Scholar 

  • Feuillet C, Penger A, Gellner K, Mast A, Keller B. Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol. 2001;125:1304–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A. 2003;100:15253–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fluhr R, Mattoo AK. Critical reviews in plant sciences. In: Conger BV (ed) Ethylene biosynthesis and perception, vol 15. Boca Raton: CRC Press; 1996. pp 479–523

    Google Scholar 

  • Frandsen G, Müller-Uri F, Nielsen M, Mundy J, Skriver K. Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem. 1996;271:343–8.

    CAS  PubMed  Google Scholar 

  • Fric F, Heitefuss R. Immunochemische und elektrophoretische Untersuchungen der Proteine von Weizenblättern nach Infektion mit Puccinia graminis tritici. Phytopathol Z. 1970;69:236–46.

    CAS  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323:1357–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–63.

    CAS  PubMed  Google Scholar 

  • Fu YP, Duan XY, Tang CL, Li XR, Voegele RT, Wang XJ, Wei GR, Kang ZS. TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant J. 2014;78:16–30.

    CAS  PubMed  Google Scholar 

  • Fukuda R, McNew JA, Weber T, Parlati F, Engel T, Nickel W, Rothman JE, Söllner TH. Functional architecture of an intracellular membrane t-SNARE. Nature. 2000;407:198–202.

    CAS  PubMed  Google Scholar 

  • Fullington JG, Nityagopala A. Effect of rust infection on the protein components of wheat. Phytochemistry. 1986;25:1289–129.

    CAS  Google Scholar 

  • Gale MD, Devos KM. Plant comparative genetics after 10 years. Science. 1998;282:656–9.

    CAS  PubMed  Google Scholar 

  • Gan PH, Dodds PN, Hardham AR. Plant infection by biotrophic fungal and oomycete pathogens. In: Silvia P, František B, editors. Signaling and communication in plant symbiosis. New York: Springer; 2012. p. 183–212.

    Google Scholar 

  • Gassner G, Franke W. Untersuchungen über den Stickstoffhaushalt rostinfizierter Getreideblätter. Phytopathol Z. 1938;11:517–70.

    CAS  Google Scholar 

  • Gay JL, Salzberg A, Woods AM. Dynamic experimental evidence for the plasma membrane ATPase domain hypothesis of haustorial transport and for ionic coupling of the haustorium of Erysiphe graminis to the host cell (Hordeum vulgare). New Phytol. 1987;107:541–8.

    CAS  Google Scholar 

  • Goddard MV. Cytological studies of Puccinia striiformis (yellow rust of wheat). Trans Br Mycol Soc. 1976;66:433–7.

    Google Scholar 

  • Gordon TR, Duniway JM. Effects of powdery mildew infection on the efficiency of CO2 fixation and light utilization by sugar beet leaves. Plant Physiol. 1982;69:139–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gou JY, Li K, Wu KT, Wang XD, Lin HQ, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sáncheza J, Fu DL, Blechl A, Wallington E, Fahima Z, Meeta M, Epstein L, Dubcovsky J. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell. 2015;27:1755–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant JJ, Yun BW, Loake GJ. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 2000;24:569–82.

    CAS  PubMed  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell. 1997;89:25–31.

    CAS  PubMed  Google Scholar 

  • Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 2002;130:1894–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17:1376–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z. Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiol Biochem. 2013;71:164–72.

    CAS  PubMed  Google Scholar 

  • Hahn M. The rust fungi: cytology, physiology and molecular biology of infection. In: Kronstadt J, editor. Fungal pathology. Dordrecht: Kluwer Academic Publisher; 2000. p. 267–306.

    Google Scholar 

  • Hahn M, Mendgen K. Characterization of in planta induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant-Microbe Interact. 1997;10:427–37.

    CAS  PubMed  Google Scholar 

  • Hahn M, Mendgen K. Signal and nutrient exchange at biotrophic plant-fungus interfaces. Curr Opin Plant Biol. 2001;4:322–7.

    CAS  PubMed  Google Scholar 

  • Hahn M, Neef U, Struck C, Göttfert M, Mendgen K. A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae. Mol Plant Microbe Interact. 1997b;10:438–45.

    CAS  PubMed  Google Scholar 

  • Hahn M, Deising H, Struck C, Mendgen K. Fungal morphogenesis and enzyme secretion during pathogenesis. In: Hartleb H, Heitefuss R, Hoppe H-H, editors. Resistance of crop plants against fungi. Jena: Gustav Fischer; 1997a. p. 33–57.

    Google Scholar 

  • Hakoyama T, Oi R, Hazuma K, Suga E, Adachi Y, Kobayashi M, Akai R, Sato S, Fukai E, Tabata S, Shibata S, Wu G.-J., Hase Y, Tanaka A, Kawaguchi M, Kouchi H, Umehara Y, Suganuma N. The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Physiol. 2012; 160:897–905

    Google Scholar 

  • Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A. 2000;97:3735–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao YB, Wang T, Wang K, Wang XJ, Fu YP, Huang LL, Kang ZS. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS One. 2016a;11:e0150717.

    PubMed  PubMed Central  Google Scholar 

  • Hao YB, Wang XJ, Wang K, Li HY, Duan XY, Tang CL, Kang ZS. TaMCA1, a regulator of cell death, is important for the interaction between wheat and Puccinia striiformis. Sci Rep. 2016b;6:26946.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harder DE, Mendgen K. Filipin-sterol complexes in bean rust- and oat crown rust-fungal/plant interactions: freeze-etch electron microscopy Uromyces appendiculatus. Protoplasma. 1982;112:46–54.

    Google Scholar 

  • Harder D, Chong J. Structure and physiology of haustoria. In: Bushnell WR, Roslfs AP, editors. The Cereal Rusts. New York: Academic Press; 1984. p. 431–76.

    Google Scholar 

  • Harder DE, Chong J. Rust haustoria. In: Mendgen K, Lesemann D-E, editors. Electron microscopy of plant pathogens. Berlin: Springer; 1991. p. 235–50.

    Google Scholar 

  • Hardham AR, Jones DA, Takemoto D. Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol. 2007;10:342–8.

    CAS  PubMed  Google Scholar 

  • Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol. 2003;23:6494–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart H, Becker H. Beitrage zur Frage des Zwischenwirtes für Puccinia glumarum. Z Pflanzenkr (Pflanzenpathol) Pflanzenschutz. 1939;49:559–66.

    Google Scholar 

  • Harter C, Pavel J, Coccia F, Draken E, Wegehingel S, Tschochner H, Wieland F. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc Natl Acad Sci U S A. 1996;93:1902–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem. 2008;283:774–83.

    CAS  PubMed  Google Scholar 

  • Heath MC. Ultrastructural and functional similarity of the haustorial neckband of rust fungi and the Casparian strip of vascular plants. Can J Bot. 1976;54:2484–9.

    Google Scholar 

  • Heath MC. Signalling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot. 1997;80:713–20.

    CAS  Google Scholar 

  • Heath MC. Hypersensitive response-related death. Plant MolBiol. 2000;44:321–34.

    CAS  Google Scholar 

  • Heath MC, Skalamera D. Cellular interactions between plants and biotrophic fungal parasites. Adv Bot Res. 1997;24:195–225.

    CAS  Google Scholar 

  • Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jürgens G. Functional characterization of the KNOLLE-interactingt-SNARE AtSNAP33 and its role in plant cytokinesis. J Cell Biol. 2001;155:239–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heisterüber D, Schulte P, Moerschbacher B. Soluble carbohydrates and invertase activity in stem rust-infected, resistant and susceptible near-isogenic wheat leaves. Physiol Mol Plant Pathol. 1994;45:111–23.

    Google Scholar 

  • Heitefuss R. Untersuchungen zur Physiologie des temperaturgesteuerten Verträglichkeitsgrades von Weizen undPuccinia graminis tritici. I. Veränderungen von Sauerstoffaufnahme und Phosphatstoffwechsel. Phytopathol Z. 1965;54:379–400.

    CAS  Google Scholar 

  • Heitefuss R. Nucleic acid metabolism in obligate parasitism. Annu Rev Phytopathol. 1966a;4:221–42.

    CAS  Google Scholar 

  • Heitefuss R. Untersuchungen zur Physiologie des temperaturgesteuerten Verträglichkeitsgrades von Weizen und Puccinia graminis tritici. II. Veränderungen des Nukleinsäurestoffwechsels. Phytopathol Z. 1966b;55:67–85.

    CAS  Google Scholar 

  • Heitefuss R. Der Einfluss von Actinomycin auf Puccinia graminis tritici auf Weizen und den Einbau von Orotsäure-C14 und Uridin-H3 in Wirtspflanze und Parasit. Phytopathol Z. 1970;69:107–14.

    CAS  Google Scholar 

  • Heitefuss R, Wolf G. Nucleic acids in host–parasite interactions. Encycl Plant Physiol, New Ser. 1976;4:480–508.

    CAS  Google Scholar 

  • Hengartner M, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-onco gene bcl-2. Cell. 1994;76:665–76.

    CAS  PubMed  Google Scholar 

  • Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013;9:e1003290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henty-Ridilla JL, Li J, Day B, Staiger CJ. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell. 2014;26:340–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hetherington AM, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol. 2004;55:401–27.

    CAS  PubMed  Google Scholar 

  • Hilu HM. Host-pathogen relationships of Puccinia sorghi in nearly isogenic resistant and susceptible seedling corn. Phytopathology. 1965;55:563–9.

    CAS  PubMed  Google Scholar 

  • Hovmøller MS, Sorensen CK, Walter S, Justesen AF. Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol. 2011;49:197–217.

    PubMed  Google Scholar 

  • Hu GG, Rijkenberg FHJ. Ultrastructural localization of cytokinins in Puccinia recondite f. sp. tritici-infected wheat leaves. Physiol Mol Plant Pathol. 1998;52:79–94.

    CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164:655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Wang J, Zhang H. Rice ZFP15 gene encoding fora novel C2H2-type zinc finger protein lacking DLN box, is regulated by spike development but not by abiotic stresses. Mol Biol Rep. 2005;32:177–83.

    CAS  PubMed  Google Scholar 

  • Huang X, Ma J, Chen X, Wang X, Ding K, Han D, Qu Z, Hang L, Kang Z. Genes involved in adult plant resistance to stripe rust in wheat cultivar Xingzi 9104. Physiol Mol Plant Pathol. 2013;81:26–32.

    CAS  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 2003;22:5679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hückelhoven R, Dechert C, Kogel KH. Overexpressionof barley BAX inhibitor 1 induces breakdown of mlo-mediatedpenetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A. 2003;100:5555–60.

    PubMed  PubMed Central  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013;76:957–69.

    CAS  PubMed  Google Scholar 

  • Imaseki H. The biochemistry of ethylene biosynthesis. In: Mattoo AK, Suttle JC, editors. The plant hormone ethylene. Boca Raton: CRC Press; 1991. p. 1–20.

    Google Scholar 

  • Inada N, Ueda T. Membrane trafficking pathways and their roles in plant-microbe interactions. Plant Cell Physiol. 2014;55:672–86.

    CAS  PubMed  Google Scholar 

  • Ishikawa T, Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem. 2008;72:1143–54.

    CAS  PubMed  Google Scholar 

  • Izawa T, Foster R, Chua NH. Plant bZIP protein DNA binding specificity. J Mol Biol. 1993;230:1131–44.

    CAS  PubMed  Google Scholar 

  • Jagger LJ, Newell C, Berry ST, MacCormack R, Boyd LA. Histopathology provides a phenotype by which to characterize stripe rust resistance genes in wheat. Plant Pathol. 2011;60:640–8.

    Google Scholar 

  • Jameson PE. Cytokinins and auxins in plant-pathogen interactions–An overview. Plant Growth Regul. 2000;32:369–80.

    CAS  Google Scholar 

  • Jayasekaran K, Kim KN, Vivekanandan M, Shin JS, Ok SH. Novel calcium-binding GTPase (AtCBG) involved in ABA-mediated salt stress signaling in Arabidopsis. Plant Cell Rep. 2006;25:1255–62.

    CAS  PubMed  Google Scholar 

  • Jiang Z, Ge S, Xing L, Han D, Kang Z, Zhang G, Wang X, Wang X, Chen P, Cao A. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot. 2013;64:3735–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H. Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett. 2008;582:2679–84.

    CAS  PubMed  Google Scholar 

  • Jin Y. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica. 2011;179:105–8.

    Google Scholar 

  • Jin Y, Szabo LJ, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology. 2010;100:432–5.

    PubMed  Google Scholar 

  • Johnson R. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Simmonds NW, Rajaram S, editors. Breeding strategies for resistance to the rusts of wheat. Mexico City: CYMMIT; 1988. p. 63–75.

    Google Scholar 

  • Johnson LB, Brannaman BL, Zscheile FP. Protein and enzyme changes in wheat leaves following infection with Puccinia recondita. Phytopathology. 1968;58:578–83.

    CAS  Google Scholar 

  • Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    CAS  PubMed  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science. 1994;266:789–93.

    CAS  PubMed  Google Scholar 

  • Jung HW, Hwang BK. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol Plant Pathol. 2007;8:503–14.

    CAS  PubMed  Google Scholar 

  • Jung HW, Lim CW, Lee SC, Choi HW, Hwang CH, Hwang BK. Distinct roles of the pepper hypersensitive inducedreaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. Planta. 2008;227:409–25.

    CAS  PubMed  Google Scholar 

  • Kalde M, Nühse TS, Findlay K, Peck SC. The syntaxinSYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci U S A. 2007;104:11850–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J. 2009;28:926–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang ZS. Ultrastructure of plant pathogenic fungi. Beijing: China Science &Technology Press; 1996.

    Google Scholar 

  • Kang ZS, Huang LL, Li ZQ. Ultrastructure of wheat cell responses to invasion of wheat stripe rust. Acta Agric Beoreali-occidentalis Sin. 1993;2:25–8.

    Google Scholar 

  • Kang ZS, Li ZQ, Shang HS. Nuclear condition of uredinial stage of wheat stripe rust. Acta Phys Sin. 1994;24:26–31.

    Google Scholar 

  • Kang ZS, Huang LL, Li JY. Morphology of plant pathogenic fungi under scanning electron microscope. Beijing: China Agriculture Press; 1997.

    Google Scholar 

  • Kang ZS, Huang LL, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Prot. 2002;109:25–37.

    CAS  Google Scholar 

  • Kang L, Li J, Zhao T, Xiao F, Tang X, et al. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci U S A. 2003a;100:3519–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang ZS, Huang LL, Buchenauer H. Subcellular localization of chitinase and β-1,3–glucanase in compatible and incompatible interaction between wheat and Puccinia striiformis f. sp. tritici. J Plant Dis Protect. 2003b;110:170–83.

    CAS  Google Scholar 

  • Kang ZS, Wang Y, Huang LL, Wei GR, Zhao J. Histology and ultrastructure of incompatible combination between Puccinia striifromis and wheat cultivars with resistance of low reaction type. Sci Agric Sin. 2003c;36:1026–31.

    Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol. 2003;4:383–91.

    CAS  PubMed  Google Scholar 

  • Karrer EE, Beachy RN, Holt CA. Cloning of tobacco genes that elicit the hypersensitive response. Plant Mol Biol. 1998;36:681–90.

    CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Jin H. Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol. 2010;48:225–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Pan L, Reed JC, Uchimiya H. Evolutionallyconserved plant homologue of the Bax inhibitor-1 (BI-1) gene capableof suppressing Bax-induced cell death in yeast. FEBS Lett. 1999;464:143–7.

    CAS  PubMed  Google Scholar 

  • Kawai-Yamada M, Jin U, Yoshinaga K, Hirata A, Uchimiya H. Mammalian Bax-induced plant cell death can be downregulatedby overexpression of Arabidopsis Bax inhibitor-1 (AtBI-1). Proc Natl Acad Sci U S A. 2001;98:12295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai-Yamada M, Ohmori Y, Uchimiya H. Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell. 2004;16:21–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Gv R, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A. 2001;98:6511–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 2009;14:373–82.

    CAS  PubMed  Google Scholar 

  • Keller B, Bieri S, Bossolini E, Yahiaoui N. Cloning genes and QTLs for disease resistance in cereals. In: Varshney RK, Tuberosa R, editors. Genomic-assisted crop improvement. Dordrecht: Springer; 2007. p. 103–27.

    Google Scholar 

  • Kim WK, Rohringer R. Metabolism of aromatic compounds in healthy and rust-infected primary leaves of wheat. III. Studies on the metabolism of tryptophan. Can J Bot. 1969;47:1425–33.

    CAS  Google Scholar 

  • Kim SY, Thomas TL. A family of basic leucine zipper proteins bind to seed specification elements in the carrot Dc3 gene promoter. J Plant Physiol. 1998;152:607–13.

    CAS  Google Scholar 

  • Kim CY, Lee SH, Park HC, Bae CG, Cheong YH, Choi YJ, Han C, Lee SY, Lim CO, Cho MJ. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant-Microbe Interact. 2000;13:470–4.

    CAS  PubMed  Google Scholar 

  • Kim CY, Koo YD, Jin JB, Moon BC, Kang CH, Kim ST, Park BO, Lee SY, Kim ML, Huang I, Kang KY, Bahk JD, Lee SY, Cho MJ. Rice C2-domain proteins are induced and translocated to the plasma membrane in response to a fungal elicitor. Biochemistry. 2003a;42:11625–31.

    CAS  PubMed  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 2003b;15:411–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Kim JE, Lee JH, Lee MH, Jun HW, Bahk YY, Hwang BK, Hwang I, Kim WT. The Vr-PLC3 gene encodes a putative plasma membrane-localized phos-phoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett. 2004;556:127–36.

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim HS, Lee YH, Kim YS, Oh HW, Joung H, Chae SK, Suh KH, Jeon JH. Polyamine biosynthesis regulated by StARD expression plays an important role in potato wound periderm formation. Plant Cell Physiol. 2008a;49:1627–32.

    CAS  PubMed  Google Scholar 

  • Kim YC, Kim SY, Choi D, Ryu CM, Park JM. Molecular characterization of a pepper C2 domain- containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. Planta. 2008b;227:1169–79.

    CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 2009a;323:1053–7.

    CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant. 2009b;2:13–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Király Z, Elhammad ME, Pozsar BI. Increased cytokinin activity of rust-infected bean and broad bean leaves. Phytopathology. 1967;57:93.

    Google Scholar 

  • Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 1999;6:508.

    CAS  PubMed  Google Scholar 

  • Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol. 2000;195:269–324.

    CAS  PubMed  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S. Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J. 2005;44:516–29.

    CAS  PubMed  Google Scholar 

  • Kolmer JA. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol. 1996;34:435–55.

    CAS  PubMed  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 2004;134:43–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJR, Gabius HJ. Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene. 2003;22:6277–88.

    CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y. Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res. 2000;28:960–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–3.

    CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J. 2011;65:392–403.

    CAS  PubMed  Google Scholar 

  • Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614–20.

    CAS  PubMed  Google Scholar 

  • Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med. 2005;11:725–30.

    PubMed  Google Scholar 

  • Kruijt M, DE Kock MJ, de Wit PJ. Receptor-like proteins involved in plant disease resistance. Mol Plant Pathol. 2005;6:85–97.

    CAS  PubMed  Google Scholar 

  • Kwon SI, Cho HJ, Bae K, Jung JH, Jin HC, Park OK. Role of an Arabidopsis Rab GTPase RabG3b in pathogen response and leaf senescence. J Plant Biol. 2009;52:79–87.

    CAS  Google Scholar 

  • Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, et al. Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics. 2004;167:1975–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrecht M, Okon Y, Broek A. V, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8:298–300

    Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1998;240:1759–64.

    Google Scholar 

  • Laura M, Consonni R, Locatelli F, Fumagalli E, Allavena A, Coraggio I, Mattana M. Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing OsMyb4. Plant Physiol Biochem. 2010;48:764–71.

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim WT. Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE INSENSITIVE3-LIKE proteins. Plant Physiol. 2003;132:1475–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TF, McNellis TW. Evidence that the BONZAI1/COPINE1 protein is a calcium and pathogen-responsive defense suppressor. Plant Mol Biol. 2009;69:155–66.

    CAS  PubMed  Google Scholar 

  • Li MR. Water relation and photosynthesis in stripe rusted wheat leaves. Dissertation, Department of Plant Protection, Northwest A&F University., Shaanxi, China; 1998

    Google Scholar 

  • Li A, Heath MC. Effect of plant growth regulators on the interactions between bean plants and rust fungi non-pathogenic on beans. Physiol Mol Plant Pathol. 1990;37:245–54.

    CAS  Google Scholar 

  • Li ZQ, Zeng SM. Wheat stripe rust in China. Beijing: China Agriculture Press; 2002.

    Google Scholar 

  • Li L, Yu XF, Thompson MG, Yoshida S, Asami T, Chory J, Yin YH. Arabidopsis MYB30 is a direst target of BES1 and cooperates with BED1 to regulate brassinosteroid-induced gene expression. Plant J. 2009;58:275–86.

    CAS  PubMed  Google Scholar 

  • Li HB, Wei GR, Xu JR, Huang LL, Kang ZS. Identification of wheat proteins with altered expression levels in leaves infected by the stripe rust pathogen. Acta Physiol Plant. 2011;33:2423–35.

    CAS  Google Scholar 

  • Li H, Ren B, Kang ZS, Huang LL. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages. Protoplasma. 2016a;253:787–802.

    CAS  PubMed  Google Scholar 

  • Li Q, Qin JF, Zhao YY, Zhao J, Huang LL, Kang ZS. Virulence analysis of sexual progeny of the wheat stripe rust pathogen recovered from wild barberry in Shaanxi and Gansu. Acta Phys Sin. 2016b;46:809–20.

    Google Scholar 

  • Line RF, Chen XM. Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis. 1995;79:1254–5.

    Google Scholar 

  • Line RF, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–1987. United States Department of Agriculture, Agricultural Research Service, Technical Bulletin Number 1788; 1992, 44 pp

    Google Scholar 

  • Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V. Live and let die- Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol. 2010;89:194–9.

    CAS  PubMed  Google Scholar 

  • Littlefield LJ, Health MC. Ultrastructure of rust fungi. New York: Academic Press; 1979.

    Google Scholar 

  • Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998;280:1943–5.

    CAS  PubMed  Google Scholar 

  • Liu HM, Liu TG, Xu SC, Liu DQ, Chen WQ. Inheritance of yellow rust resistance in an elite wheat germplasm Xingzi 9104. Acta Agron Sin. 2006;32:1742–5.

    Google Scholar 

  • Liu B, Xue XD, Cui S, Zhang XY, Han QM, Zhu L, Liang XF, Wang XJ, Huang LL, Chen XM, Kang ZS. Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep. 2010;37:1045–52.

    CAS  PubMed  Google Scholar 

  • Liu FR, Guo J, Bai PF, Duan YH, Wang XD, Cheng YL, Feng H, Huang LL, Kang ZS. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS One. 2012a;7:e37146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang Q, Chang Q, Zhuang H, Huang LL, Kang ZS. Cloning and characterization of the actin gene from Puccinia striiformis f. sp. tritici. Microbiol. Biotechnol. 2012b;28:2331.

    CAS  Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant. 2014;7:1740–55.

    CAS  PubMed  Google Scholar 

  • Liu J, Han LN, Huai BY, Zheng PJ, Chang Q, Guan T, Li D, Huang LL, Kang ZS. Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat sripe rust caused by Puccinia striiformis. J Exp Bot. 2015;66:7325–38.

    CAS  PubMed  Google Scholar 

  • Liu MJ, Peng Y, Li HY, Deng L, Wang XJ, Kang ZS. TaSYP71, a Qc-SNARE, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Front Plant Sci. 2016a;7:544.

    PubMed  PubMed Central  Google Scholar 

  • Liu P, Myo T, Ma W, Lan DY, Qi T, Guo J, Song P, Guo J, Kang ZS. TaTypA, a ribosome-binding GTPase protein, positively regulates wheat resistance to the stripe rust fungus. Front Plant Sci. 2016b.; https://doi.org/10.3389/fpls.2016.00873.

  • Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell. 2002;14:1605–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loehrer M, Langenbach C, Goellner K. Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust. Mol Plant-Microbe Interact. 2008;21:1421–30.

    CAS  PubMed  Google Scholar 

  • Loon LCV, Geraats BPJ, Linthorst HJM. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 2006;11:184–91.

    PubMed  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 2003;8:263–71.

    CAS  PubMed  Google Scholar 

  • Lowe I, Cantu D, Dubcovsky J. Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica. 2011;179:69–79.

    PubMed  PubMed Central  Google Scholar 

  • Lu M, Tang X, Zhou JM. Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell. 2001;13:437–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wang MN, Chen XM, See D, Chao SM, Jing JX. Mapping of Yr62 and a small effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet. 2014;127:1449–59.

    CAS  PubMed  Google Scholar 

  • Luan S. The CBL–CIPK network in plant calcium signaling. Cell. 2008;14:37–42.

    Google Scholar 

  • Lunderstädt J. Effect of rust infection on hexokinase activity and carbohydrate dissimilation in primary leaves of wheat. Can J Bot. 1966;44:1345–64.

    Google Scholar 

  • Lupton FGH, Macer RCF. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Trans Br Mycol Soc. 1962;45:21–45.

    Google Scholar 

  • Ma Q, Shang HS. Ultrastructural analysis of the interaction between Puccinia striiformis f. sp. tritici and wheat after thermal induction of resistance. J Plant Pathol. 2004;86:19–26.

    Google Scholar 

  • Ma JB, Huang XL, Wang XJ, Chen XM, Qu ZP, Huang LL, Kang ZS. Identification of expressed genes during compatible interaction between stripe rust (Puccinia striiformis) and wheat using a cDNA library. BMC Genomics. 2009;10:586.

    PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexa-ploid spring wheat (Triticum aestivum L.). G3: Genes Genom Genet. 2015;5:449–65.

    Google Scholar 

  • MacDonald PW, Strobel GA. Adenosine diphosphate-glucose pyrophosphorylase control of starch accumulation in rust-infected wheat leaves. Plant Physiol. 1970;46:126–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackrill JJ. Protein-protein interactions in intracellular Ca2+ -release channel function. Biochem J. 1999;337:345–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magyarosy AC, Malkin R. Effect of powdery mildew infection of sugar beet on the content of electron carriers in chloroplasts. Physiol Plant Pathol. 1978;13:183–8.

    CAS  Google Scholar 

  • Magyarosy AC, Schurmann P, Buchanan BB. Effect of powdery mildew infection on photosynthesis by leaves and chloroplasts of sugar beets. Plant Physiol. 1976;57:486–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mains EB. Studies concerning heteroecious rusts. Mycologica. 1933;25:407–17.

    Google Scholar 

  • Malca I, Murray HC, Zscheile FB. Organic conistituents in conidia of Eripsiplie gramninis tritici. Phytopathology. 1962;52:891–3.

    CAS  Google Scholar 

  • Mallard S, Nègre S, Pouya S, Gaudet D, Lu ZX, Dedryver F. Adult plant resistance-related gene expression in ‘Camp Remy’ wheat inoculated with Puccinia striiformis. Mol Plant Pathol. 2008;9:213–25.

    CAS  PubMed  Google Scholar 

  • Manners JM. The host–haustorium interface in powdery mildews. Aust J Plant Physiol. 1989;16:45–52.

    Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM. Cloning and characterization of a novel human alkaline ceramidase. J Biol Chem. 2001;276:26577–88.

    CAS  PubMed  Google Scholar 

  • Marasas CN, Smale M, Singh RP. The economic impact of productivity maintenance research: breeding for leaf rust resistance in modern wheat. Agric Econ. 2003;29:253.

    Google Scholar 

  • Mares DJ. A light and electron microscope study of the interaction of yellow rust (Puccinia striiformis) with a susceptible wheat cultivar. Ann Bot. 1979;43:183–9.

    Google Scholar 

  • Mares DJ, Cousen S. The interaction of yellow rust (Puccinia striiformis) with winter wheat cultivars showing adult plant resistance: macroscopic and microscopic events associated with the resistant reaction. Physiol Plant Pathol. 1977;10:257–74.

    Google Scholar 

  • Martinez-Garcia JF, Moyano E, Alcocer MJ, Martin C. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors. Plant J. 1998;13:489–505.

    CAS  PubMed  Google Scholar 

  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem. 2012;287:11717–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashaal SF, Bama B, Király Z. Effect of photosynthesis inhibitors on wheat stem rust development. Acta Physiol Acad Sci Hung. 1981;16:45–8.

    CAS  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R. Overexpressionof Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J. 2003;33:425–34.

    CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. Melbourne: CSIRO Publications; 1995.

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC. Catalogue of gene symbols for wheat. 2013. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdf. Accessed 23 Dec 2016.

  • Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA. QTL identification and microphenotype characterization of the developmentally regulated yellow rust resistance. Theor Appl Genet. 2008;117:391–9.

    CAS  PubMed  Google Scholar 

  • Mellersh DG, Heath MC. An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol Plant-Microbe Interact. 2003;16:398–404.

    CAS  PubMed  Google Scholar 

  • Mendgen K. Microautoradiographic studies on hostparasite interactions. II. The exchange of 3H-lysine between Uromyces phaseoli and Phaseolus vulgaris. Arch Microbiol. 1979;123:129–35.

    CAS  Google Scholar 

  • Mendgen K. Nutrient uptake in rust fungi. Phytopathology. 1981;71:983–9.

    CAS  Google Scholar 

  • Mendgen K, Hahn M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 2002;7:352–6.

    CAS  PubMed  Google Scholar 

  • Mendgen K, Nass P. The activity of powdery-mildew haustoria after feeding the host cell with different sugars, as measured with a potentiometric cyanine dye. Planta. 1988;174:283–8.

    CAS  PubMed  Google Scholar 

  • Metzger RJ, Silbaugh BA. Inheritance of resistance to stripe rust and its association with brown glume color in Triticum aestivum L., “P.I. 178383”. Crop Sci. 1970;10:567–8.

    Google Scholar 

  • Michelmore RW, Christopoulou M, Caldwell KS. Impacts of resistance gene genetics, function, and evolution on a durable future. Annu Rev Phytopathol. 2013;51:291–319.

    CAS  PubMed  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R. Barley MLO modulates actin-dependent and actin- Independent antifungal defense pathways at the cell periphery. Plant Physiol. 2007;144:1132–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirocha CJ, Zaki AI. Fluctuation in amount of starch in host plants invaded by rust and mildew fungi. Phytopathology. 1966;56:1220–2.

    CAS  Google Scholar 

  • Mitchell DT. Carbon dioxide exchange by infected first leaf tissues susceptible to wheat stem rust. Trans Br Mycol Soc. 1979;72:63–8.

    CAS  Google Scholar 

  • Mitchell DT, Fung AK, Lewis DH. Changes in the ethanol-soluble carbohydrate composition and acid invertase in infected first leaf tissues susceptible to crown rust of oat and wheat stem rust. New Phytol. 1978;80:381–92.

    CAS  Google Scholar 

  • Mittapalli O, Shukle RH. Molecular characterization and responsive expression of a defender against apoptotic cell death homologue from the Hessian fly, Mayetiola destructor. Comp Biochem Physiol B: Biochem Mol Biol. 2008;149:517–23.

    Google Scholar 

  • Moldenhauer J, Moerschbacher BM, Van der Westhuizen AJ. Histological investigation of stripe rust (Puccinia striiformis f. sp tritici) development in resistant and susceptible wheat cultivars. Plant Pathol. 2006;55:469–74.

    Google Scholar 

  • Moldenhauer J, Pretorius ZA, Moerschbacher BM, Prins R, van der Westhuizen AJ. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Mol Plant Pathol. 2008;9:137–45.

    CAS  PubMed  Google Scholar 

  • Moncrief ND, Kretsinger RH, Goodman M. Evolution of EF-hand calcium-modulated proteins I. Relationships based on amino acid sequences. J Mol Evol. 1990;30:522–62.

    CAS  PubMed  Google Scholar 

  • Montalbini P, Buchanan BB. Effect of a rust infection on photophosphorylation by isolated chloroplasts. Physiol Plant Pathol. 1974;4:191–6.

    CAS  Google Scholar 

  • Montalbini P, Elstner EF. Ethylene evolution by rust-infected, detached bean (Phaseolus vulgaris L.) leaves susceptible and hypersensitive to Uromyces phaseoli (Pers.) Wint. Planta. 1977;135:301–6.

    CAS  PubMed  Google Scholar 

  • Morel JB, Dangl JL. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 1997;4:671–83.

    CAS  PubMed  Google Scholar 

  • Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici). BMC Genomics. 2015;16:718.

    PubMed  PubMed Central  Google Scholar 

  • Mysore KS, Ryu CM. Nonhost resistance: how much do we know? Trends Plant Sci. 2004;9:97–104.

    CAS  PubMed  Google Scholar 

  • Nagarajan S, Nayar SK, Bahadur P. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta var. album in India. Plant Dis. 1986;70:173.

    Google Scholar 

  • Nahm MY, Kim SW, Yun D, Lee SY, Cho MJ, et al. Molecular and biochemical analyses of OsRab7, a rice Rab7 homolog. Plant Cell Physiol. 2003;44:1341–9.

    CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant. 2006;126:62–71.

    CAS  Google Scholar 

  • Nalefski EA, Falke JJ. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996;5:2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi A, Welti R, Shah J. The Arabidopsis thaliana dihydrox-yacetone phosphate reductase gene suppressor of fatty acid desaturase deficiency1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell. 2004;16:465–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436–9.

    CAS  PubMed  Google Scholar 

  • Navazio L, Sponga L, Dainese P, Fitchette-Laine AC, Faye L, Baldan B, Mariani P. The calcium binding protein calreticulin in pollen of Liriodendron tulipifera L. Plant Sci. 1998;131:35–42.

    CAS  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature. 2001;410:596–9.

    CAS  PubMed  Google Scholar 

  • Niks RE. How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J Integr Agric. 2014;13:244–54.

    Google Scholar 

  • Niu XP, Renshaw-Gegg L, Miller L, Guiltinan MJ. Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant Mol Biol. 1999;41:1–13.

    CAS  PubMed  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AME, Peck SC. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 2007;51:931–40.

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.

    PubMed  Google Scholar 

  • Ohme-Takagi M, Suzuk K, Shinshi H. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 2000;41:1187–92.

    CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10:79–87.

    CAS  PubMed  Google Scholar 

  • Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol. 2005;170:261–73.

    Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.

    CAS  PubMed  Google Scholar 

  • Owera SAP, Farrar JF, Whitbread R. Growth and photosynthesis in barley infected with brown rust. Physiol Plant Pathol. 1981;18:79–90.

    CAS  Google Scholar 

  • Padmanabhan C, Zhang X, Jin H. Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol. 2009;12:465–72.

    CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature. 2003;425:257–63.

    CAS  PubMed  Google Scholar 

  • Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart Jr CN. Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics. 2007;7:291–301.

    CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987;6:3553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pegg GF. Endogenous auxins in healthy and diseased plants. Encycl Plant Physiol, New Ser. 1976;4:560–81.

    CAS  Google Scholar 

  • Perfect SE, Green JR. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol. 2001;2:101–8.

    CAS  PubMed  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341:786–8.

    CAS  PubMed  Google Scholar 

  • Pfeiffer E, Jäger K, Reisener HJ. Untersuchungen über Stoffwechselbeziehungen zwischen Parasit und Wirt am Beispiel von Puccinia graminis var. tritici auf Weizcn. II. Aufnahme von Hexosen aus dem Wirtsgewebe. Planta. 1969;85:194–201.

    CAS  PubMed  Google Scholar 

  • Porter K, Shimono M, Tian M, Day B. Arabidopsis actin- depolymerizing factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog. 2012;8:e1003006.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F, Alvarez-Barrientos A, Fernandez-Salguero PM. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulationof Bcl-2 and NF-kB. Int J Cancer. 2005;115:74–84.

    CAS  PubMed  Google Scholar 

  • Preeni T, Ayres PG. Transpiration and the water relations of faba bean (Vicia faba) infected by rust (Uromyces viciae-fabae). New Phytol. 1986;102:385–95.

    Google Scholar 

  • Prins R, Ramburan VP, Pretorius ZA, Boyd LA, Boshoff WHP, Smith PH, Louw JH. Development of a doubled haploid mapping population and linkage map for the bread wheat cross Kariega × Avocet S. South Afr J Plant Soil. 2005;22:1–8.

    CAS  Google Scholar 

  • Qi Y, Tsuda K, Nguyen LV, Wang X, Lin J, Murphy AS, Glazebrook J, Thordal-Christensen H, Katagiri F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J Biol Chem. 2011;286:31297–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quick WA, Shaw M. The physiology of host-parasite relations. XIV. The effect of rust infection on the nucleic acid content of wheat leaves. Can J Bot. 1964;42:1531–40.

    CAS  Google Scholar 

  • Raeder JM, Bever WM. Spore germination of Puccinia glumarum with notes on related species. Phytopathology. 1931;21:76–789.

    Google Scholar 

  • Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 2006;580:3498–504.

    CAS  PubMed  Google Scholar 

  • Raffaele S, Vailleau F, Leger A, Joubes J, Mierch O, Huard C, Blee E, Mongrand S, Domergue F, Roby B. A MYB transcription factor regulates very long chain fatty acid biosynthesis for acti- vation of the hypersensitive cell death response in Arabidopsis. Plant Cell. 2008;20:752–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M. Biochemical analysis of type II Metacaspase (mcII-Pa). Masters thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden. 2010

    Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R. A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet. 2004;108:1426–33.

    CAS  PubMed  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J. 2011;68:100–13.

    CAS  PubMed  Google Scholar 

  • Ravane S, Gakiere B, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A. 1998;95:7805–12.

    Google Scholar 

  • Reddy VS, Reddy AS. Proteomics of calcium-signaling components in plants. Phytochemistry. 2004;65:1745–76.

    CAS  PubMed  Google Scholar 

  • Reiter BG, Yudkin LY, Yudnika NB. Submicroscopic structure of Puccinia recondite f. sp. tritici and leaf cells of Triticum aestivum. Mikol Fitopatol. 1976;10:257–60.

    Google Scholar 

  • Ren T, Qu F, Morris TJ. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell. 2000;12:1917–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren RS, Wang MN, Chen XM, Zhang ZJ. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet. 2012;125:847–57.

    CAS  PubMed  Google Scholar 

  • Risk JM, Selter LL, Krattinger SG, Viccars LA, Richardson TM, Buesing G, Herren G, Lagudah ES, Keller B. Functional variability of the Lr34 durable resistance gene in transgenic wheat. Plant Biotechnol J. 2012;10:477–87.

    CAS  PubMed  Google Scholar 

  • Robert C, Bancal MO, Ney B, Lannou C. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytol. 2005;165:227–41.

    PubMed  Google Scholar 

  • Roberts EA, Chua J, Kyei GB, Deretic V. Higher order Rab programming in phagolysosome biogenesis. J Cell Biol. 2006;174:923–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roelfs AP. Wheat and rye stem rust. In: Roelfs AP, Bushnell W, editors. The cereal rusts, vol. II. Orlando: Academic Press; 1985. p. 3–27.

    Google Scholar 

  • Rohringer R. Untersuchungen zur Biochemie von Weizenkeimpflanzen nach Infektion mit Puccinia graminis tritici, Erikss und Henn, phR 126 A. Phytopathol Z. 1957;29:45–64.

    Google Scholar 

  • Ron M, Avni A. The receptor for the fungal elicitor ethylene inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16:1604–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubiales D, Niks RE. Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis. 1995;79:1208–12.

    Google Scholar 

  • Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 2011;16:258–64.

    CAS  PubMed  Google Scholar 

  • Ruf IK, Rhyne PW, Yang H, Borza C, Hutt-Fletcher LM, Cleveland JL, Sample JT. Epstein-Barr virus regulates c-MYC, apoptosis and tumorigenicity in Burkitt lymphoma. Mol Cell Biol. 1999;19:1651–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol. 1998;1:311–5.

    CAS  PubMed  Google Scholar 

  • Ryerson E, Li A, Young JP, Heath MC. Changes in abscisic acid levels in bean leaves during the initial stages of host and nonhost reactions to rust fungi. Physiol Mol Plant Pathol. 1993;43:265–73.

    CAS  Google Scholar 

  • Rzewuski G, Cornell KA, Rooney L, Burstenbinder K, Wirtz M, Hell R, Sauter M. OsMTN encodes a 50-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). J Exp Bot. 2007;58:1505–14.

    CAS  PubMed  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science. 2013;341:783–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samborski DJ, Rohringer R, Person C. Effect of rust-inhibiting compounds on the metabolism of wheat leaves. Can J Bot. 1961;39:1019–27.

    CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF. Communicating with calcium. Plant Cell. 1999;11:691–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J. 2005;44:718–29.

    CAS  PubMed  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell. 2008;20:3374–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scianimanico S, Desrosiers M, Dermine JF, Méresse S, Descoteaux A, et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell Microbiol. 1999;1:19–32.

    CAS  PubMed  Google Scholar 

  • Shafiei R, Hang C, Kang J-G, Loake GJ. Identification of loci controlling nonhost disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol. 2007;8:773–84.

    CAS  PubMed  Google Scholar 

  • Shang HS, Zhang H, Li ZQ. RNA synthesis in primary leaves of stripe rusted wheat. Plant Physiol Commun. 1994;30:266–8.

    CAS  Google Scholar 

  • Sharma YK, Davis KR. The effects of ozone on antioxidant responses in plants. Free Radic Biol Med. 1997;23:480–8.

    CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 2005;46:209–21.

    CAS  Google Scholar 

  • Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings C, Xi KQ, Wanyera R, Manninger K, Ganzález MI, Koyda M, Sanin S, Patzek LJ. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013;97:379–86.

    Google Scholar 

  • Shaw M. The physiology and host–parasite relations of the rusts. Annu Rev Phytopathol. 1963;1:259–94.

    Google Scholar 

  • Shaw M, Colotelo N. The physiology of host–parasite relations. VII. The effect of stem rust on the nitrogen and amino acids in wheat leaves. Can J Bot. 1961;39:1351–72.

    CAS  Google Scholar 

  • Shaw M, Hawkins AR. The physiology of host–parasite relations. V. A preliminary examination of the level of free endogenous indoleacetic acid in rusted and mildewed cereal leaves and their ability to decarboxylate exogenously supplied radioactive indoleacetic acid. Can J Bot. 1958;36:1–16.

    CAS  Google Scholar 

  • Shaw M, Manocha MS. Fine structure in detached, senescing wheat leaves. Can J Bot. 1965a;43:747–55.

    Google Scholar 

  • Shaw M, Manocha MS. The physiology of host–parasite relations. XV. Fine structure in rust-infected wheat leaves. Can J Bot. 1965b;43:1285–92.

    Google Scholar 

  • Shaw M, Bhattacharya PK, Quick WA. Chloroph, protein and nucleicacid levels in detached, senescing wheat leaves. Can J Bot. 1958;43:739–46.

    Google Scholar 

  • Shen X, Li HY, Jia QZ, Feng HQ, Li MQ, Liang HG. Influence of wheat stripe rust infection on photosynthetic function and expression protein D1 of wheat leaves. Acta Ecol Sin. 2008;28:669–76.

    CAS  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact. 2006;19:270–9.

    CAS  PubMed  Google Scholar 

  • Siberil Y, Doireau P, Gantet P. Plant bZIP G-box binding factors: modular structure and activation mechanisms. FEBS J. 2001;268:5655–66.

    CAS  Google Scholar 

  • Siebert R. Biochemische Untersuchungen zum Wirt-Parasit-Verhältnis am Beispiel von Puccinia graminis tritici. Phytopathol Z. 1961;40:221–44.

    Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development. 2007;134:1051–60.

    CAS  PubMed  Google Scholar 

  • Silverman W. The development of stem rust on wheat leaves treated with some sugars and sugar alcohols. Phytopathology. 1960;50:114–9.

    CAS  Google Scholar 

  • Singh RP. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci. 1992a;32:874.

    Google Scholar 

  • Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology. 1992b;82:835–8.

    Google Scholar 

  • Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5:430–6.

    CAS  PubMed  Google Scholar 

  • Smith RCG, Heritage AD, Stapper M, Barrs MD. Effect of stripe rust (Puccinia striiformis West.) and irrigation on the yield and foliage temperature of wheat. Field Crop Res. 1986;14:39–51.

    Google Scholar 

  • Sohn J, Voegele RT, Mendgen K, Hahn M. High level activation of vitamin B1 biosynthesis genes in haustoria of the rust fungus Uromyces fabae. Mol Plant-Microbe Interact. 2000;13:629–36.

    CAS  PubMed  Google Scholar 

  • Sorensen CK, Justesen AF, Hovmoller MS. 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat. Mycologia. 2012;104:1381–9.

    PubMed  Google Scholar 

  • Spanu PD. The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol. 2012;50:91–109.

    CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 2012;12:89–100.

    CAS  PubMed  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR, Zonia LE. Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci. 1997;2:275–81.

    Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci U S A. 2000;97:13436–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddart JL. Leaf senescence. In: Jeffcoat B (ed) Aspects and prospects of plant growth regulators. Wantage: British Plant Growth Regulatory Group, ARC Letcombe Laboratory; 1981. pp 51–63

    Google Scholar 

  • Straib W. Untersuchungen über das vorkommen physiologischer rassen des gelbrostes (Puccinia glumarum) in den Jahren 1935–1936 und über die Agressivität einiger neuer Formen auf Getreide und Gräsern. Arb. Biol. Reichsanst. Land= Forstwirtsch. Berlin-Dahlem. 1937;22:91–119.

    Google Scholar 

  • Struck C, Ernst M, Hahn M. Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae. Mol Plant Pathol. 2002;3:23–30.

    CAS  PubMed  Google Scholar 

  • Struck C, Müller E, Martin H, Lohaus G. The Uromyces fabae UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. Mol Plant Pathol. 2004;5:183–9.

    CAS  PubMed  Google Scholar 

  • Stubbs RW. Stripe rust. In: Roelfs AP, Bushnell W, editors. The cereal rusts, vol. II. Orlando: Academic Press; 1985. p. 61–101.

    Google Scholar 

  • Stulemeijer IJ, Stratmann JW, Joosten MH. Tomato mitogen activated protein kinases LeMPK1, LeMPK2, and LeMPK3are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol. 2007;144:1481–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Conner RL, Graf RJ, Kuzyk AD. Virulence of Puccinia striiformis f. sp. tritici, cause of stripe rust on wheat, in western Canada from 1984 to 2002. Can J Plant Pathol. 2003;25:312–9.

    Google Scholar 

  • Sunkar R, Zhu J-K. Novel and stress-regulated microRNAs andother small RNAs from Arabidopsis. Plant Cell. 2004;16:2001–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton PN, Henry MJ, Hall JL. Glucose, and not sucrose, is transported from wheat to wheat powdery mildew. Planta. 1999;208:426–30.

    CAS  Google Scholar 

  • Syamananda R, Staples RC. The carbohydrate content of rusted corn leaves. Contrib Boyce Thompson Inst. 1963;22:1–8.

    CAS  Google Scholar 

  • Szabo L. Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc Natl Acad Sci. 2001;98:7654–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11:515–28.

    CAS  PubMed  Google Scholar 

  • Takezawa D. A rapid induction by elicitors of the mRNA encoding CCD-1, a 14 kDa Ca2+ -binding protein in wheat cultured cells. Plant Mol Biol. 2000;42:807–17.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Makishima T, Sasabe M, Ichinose Y, Shiraishi T, Nishimoto T, Yamada T. dad-1, a putative programmed cell death suppressor gene in rice. Plant Cell Physiol. 1997;38:379–83.

    CAS  PubMed  Google Scholar 

  • Tang CL, Wang XJ, Duan XY, Wang XD, Huang LL, Kang ZS. Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis. J Exp Bot. 2013;64:2955–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang CL, Deng L, Chang D, Chen ST, Wang XJ, Kang ZS. TaADF3, an actin-depolymerizing factor, negatively modulates wheat resistance against Puccinia striiformis. Front Plant Sci. 2016;6:1214.

    PubMed  PubMed Central  Google Scholar 

  • Tani T, Yamamoto H. RNA and protein synthesis and enzyme changes during infection. In: Daly JM, Uritani I, editors. Recognition and specificity in plant host–parasite interaction. Baltimore: University Park Press; 1979. p. 273–87.

    Google Scholar 

  • Tani T, Yoshikawa M, Naito N. Effect of rust infection of oat leaves on cytoplasmic and chloroplast ribosomal ribonucleic acids. Phytopathology. 1973;63:491–4.

    CAS  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 1999;121:1093–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 2009;150:815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CM, Kang ZS, Li ZQ, Zhap YX. Researches on the histology and cytology of poplar leaf rust. J Northwest Forestry Univ. 2001;16:43–9.

    Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001;26:47–58.

    CAS  PubMed  Google Scholar 

  • Tissera P, Ayres PG. Endogenous ethylene affects the behavior of stomata in epidermis isolated from rust infected faba bean (Vicia faba L.). New Phytol. 1986;104:53–61.

    CAS  Google Scholar 

  • Tranzschel W. Promežutočnye chozjaeva rzavčiny chlebov i ich der UdSSR. (The alternate hosts of cereal rust fungi and their distribution in the UdSSR). Bull Plant Prot Ser. 1934;2:4–40.

    Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan IA, Jackson LF, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J. High-temperature adult plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet. 2005;112:97–105.

    CAS  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaquchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol. 2006;17:113–22.

    CAS  PubMed  Google Scholar 

  • Umnov AM, Artemenko EN, Chkanikov DI. The presence of indolyl-3-acetic acid in uredospores of wheat stem rust. Mikol Fitopatol. 1978;12:222–7.

    Google Scholar 

  • Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C. A R2R3-MYB gene, AtMYB30, acts as appositive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci U S A. 2002;99:10179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon L. Pathogenesis-related proteins. Plant Mol Biol. 1985;4:111–6.

    PubMed  Google Scholar 

  • Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87:649–67.

    PubMed  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A. The ectopic expression of the rice OsMyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol. 2006;69:26–42.

    CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M. Evaluation of transgenic tomato plants ectopically expressing the rice OsMyb4 gene. Plant Sci. 2007;173:231–9.

    CAS  Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van Dorsselaer A, Brugidou C. Proteome analysis of cultivar specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics. 2004;4:216–25.

    CAS  PubMed  Google Scholar 

  • Venugopal SC, Chanda B, Vaillancourt L, Kachroo A, Kachroo P. The common metabolite glycerol-3-phosphate is a novel regulator of plant defense signaling. Plant Signal Behav. 2009;4:746–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vercammen D, Belenghi B, Van De Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F. Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol. 2006;364:625–36.

    CAS  PubMed  Google Scholar 

  • Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol. 2003;23:2501–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voegele RT, Mendgen K. Rust haustoria: nutrient uptake and beyond. New Phytol. 2003;159:93–100.

    CAS  Google Scholar 

  • Voegele RT, Mendgen KW. Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica. 2011;179:41–55.

    Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K. The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A. 2001;98:8133–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voegele RT, Wirsel S, Ulla Möll U, Lechner M, Mendgen K. Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol Plant-Microbe Interact. 2006;19:625–34.

    CAS  PubMed  Google Scholar 

  • von Broembsen SL, Hadwiger LA. Characterization of disease resistance responses in certain gene-for-gene interactions between flax and Melampsora lini. Physiol Plant Pathol. 1972;2:207–15.

    Google Scholar 

  • Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol. 2010;8:e1000303.

    PubMed  PubMed Central  Google Scholar 

  • Walters DR, McRoberts N, Fitt BDL. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol Rev Camb Philos Soc. 2008;83:79–102.

    PubMed  Google Scholar 

  • Wan AM, Chen XM. Variation of telial formation in the Puccinia striiformis f. sp. tritici population. Phytopathology. 2016;S4:206–7.

    Google Scholar 

  • Wan AM, Muleta KT, Zegeye H, Hundie B, Pumphrey MO, Chen XM. Virulence characterization of wheat stripe rust fungus Puccinia striiformis f. sp. tritici in Ethiopia and evaluation of Ethiopian wheat germplasm for resistance to races of the pathogen from Ethiopia and the United States. Plant Dis. 2017;101:73–80.

    Google Scholar 

  • Wang BT, Shang HS. The relation between the high-temperature resistance of wheat to stripe rust and lignin synthesis. Acta Phys Sin. 1996;23:229–34.

    Google Scholar 

  • Wang MN, Chen XM. First Report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Dis. 2013;97:839.

    Google Scholar 

  • Wang MN, Chen XM. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 2015;99:1500–6.

    CAS  Google Scholar 

  • Wang Y, Kang ZS, Li ZQ. Study on heterokaryon distribution of Puccinia striiformis f. sp. tritici West. in the different mountain areas of Tianshui. J Triticeae Crops. 2004;24:110–3.

    Google Scholar 

  • Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS. Histochemical studies on the accumulation of reactive oxygen species (O2 and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol. 2007;71:230–9.

    CAS  Google Scholar 

  • Wang F, Zhong NQ, Gao P, Wang GL, Wang HY, Xia GX. SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance. Plant Cell Environ. 2008a;31:982–94.

    CAS  PubMed  Google Scholar 

  • Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJ, Jones JD, Tör M, Thomma BP. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol. 2008b;147:503–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MN, Coram TE, Ling P, Boyd L, Chen XM. High-resolution genetic and physical mapping of the Yr5 gene for resistance to stripe rust of wheat. Phytopathology. 2008c;98:S166.

    Google Scholar 

  • Wang XJ, Tang CL, Zhang G, Li YC, Wang CF, Liu B, Qu ZP, Zhao J, Han QM, Huang LL, Chen XM, Kang ZS. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics. 2009a;10:289.

    Google Scholar 

  • Wang XY, Li Q, Niu XW, Chen HY, Xu LL, Qi CK. Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum. J Exp Bot. 2009b;60:2613–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Liu W, Chen XM, Tang CL, Dong YL, Ma JB, Huang XL, Wei GR, Han QM, Huang LL, Kang ZS. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 2010a;10:9.

    PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Tang CL, Deng L, Cai GL, Liu XY, Liu B, Han QM, Buchenauer H, Wei GR, Han DJ, Huang LL, Kang ZS. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant. 2010b;139:27–38.

    CAS  PubMed  Google Scholar 

  • Wang GF, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen QH, Wang D, Zhang X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol. 2011a;191:418–31.

    CAS  PubMed  Google Scholar 

  • Wang MN, Wan AM, Chen XM, Evans CK. Barberry is more important as an alternate host for stem rust than for stripe rust in the U.S. Pacific Northwest. In: Oral presentations, poster abstracts, participants and program of BGRI technical workshop, June 13–16, 2011, St. Paul, MN, USA. 2011b, pp 166

    Google Scholar 

  • Wang XJ, Tang CL, Zhang H, Xu JR, Liu B, Lv J, Han DJ, Huang LL, Kang ZS. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. Mol Plant-Microbe Interact. 2011c;24:79–90.

    CAS  PubMed  Google Scholar 

  • Wang XD, Wang XJ, Feng H, Tang CL, Bai PF, Wei GR, Huang LL, Kang ZS. TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact. 2012a;25:755–64.

    CAS  PubMed  Google Scholar 

  • Wang XJ, Tang CL, Huang XL, Li FF, Chen XM, Zhang G, Sun YF, Han DJ, Kang ZS. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J Exp Bot. 2012b;63:4571–84.

    CAS  PubMed  Google Scholar 

  • Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant-Microbe Interact. 2013;26:407–18.

    CAS  PubMed  Google Scholar 

  • Wang XD, Wang XJ, Deng L, Chang HT, Dubcovsky J, Feng H, Han QM, Huang LL, Kang ZS. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). J Exp Bot. 2014a;65:4807–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H, Yin ZY, Kang ZS. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem. 2014b;80:90–6.

    CAS  PubMed  Google Scholar 

  • Wang MN, Wan AM, Chen XM. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Dis. 2015;99:1507–16.

    CAS  Google Scholar 

  • Wang XD, Yang BJ, Li K, Kang ZS, Cantu D, Dubcovski J. A conserved Puccinia striiformis protein interacts with wheat NPR1 and reduces induction of pathogenesis-related genes in response to pathogens. Mol Plant-Microbe Interact Online: http://dx.doi.org/10.1094/MPMI-10-16-0207-R. 2016a.

  • Wang ZY, Zhao J, Chen XM, Peng YL, Ji JJ, Zhao SL, Lv YJ, Huang LL, Kang ZS. Virulence variation of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016b;100:131–8.

    Google Scholar 

  • Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem. 2005;280:14691–9.

    CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E. Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d. J Biol Chem. 2011;286:10027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Shimada TL, Hiruma K, Takano Y. Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. Plant Physiol. 2013;163:659–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, Pryor T, Hulbert SH. Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics. 2002;162:381–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wegele H, Muller L, Buchner J. Hsp70 and Hsp90 – a relay team for protein folding. Rev Physiol Bioch P. 2004;151:1–44.

    CAS  Google Scholar 

  • Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog. 2013;9:e1003378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342:118–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whetstone RD, Atkinson TA, Spaulding DD. Berberidaceae. In: Flora of North America, Vol. 3. Website: www.eFloras.org. 1989. Accessed 23 Dec 2016.

    Google Scholar 

  • Whitney HS, Shaw M, Naylor JM. The physiology of host–parasite relations. XII. A cytophotometric study of the distribution of DNA and RNA in rust-infected leaves. Can J Bot. 1962;40:1533–44.

    CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–5.

    CAS  PubMed  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Ortiz-Islas S, Hoisington D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology. 2003;93:153–9.

    CAS  PubMed  Google Scholar 

  • Williamson CE. Ethylene, a metabolic product of diseased or injured plants. Phytopathology. 1950;40:205–8.

    CAS  Google Scholar 

  • Woltering EJ. Death proteases come alive. Trends Plant Sci. 2004;9:469–72.

    CAS  PubMed  Google Scholar 

  • Woods AM, Gay JL. The interface between haustoria of Puccinia poarum (monokaryon) and Tussilago farfara. Physiol Mol Plant Pathol. 1987;30:167–85.

    Google Scholar 

  • Wright RG, Lennard JH. Mitosis in Puccinia striiformis. Light Microsc Trans Br Mycol Soc. 1978;70:91–8.

    Google Scholar 

  • Wrigley CW, Webster HL. The effect of stem rust infection on the soluble proteins of wheat leaves. Aust J Biol Sci. 1966;19:895–901.

    CAS  Google Scholar 

  • Wynn WK. Photosynthetic phosphorylation by chloroplasts isolated from rust-infected oats. Phytopathology. 1963;53:1376–7.

    Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep. 2010a;37:3703–12.

    CAS  PubMed  Google Scholar 

  • Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Liu B, Yu YT, Wang XJ, Huang LL, Kang ZS. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol. 2010b;74:394–402.

    CAS  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000;14:3024–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science. 1999;283:94–8.

    CAS  PubMed  Google Scholar 

  • Xu H, Heath MC. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell. 1998;10:585–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LS, Jia JG, Lv J, Liang XF, Han DJ, Huang LL, Kang ZS. Characterization of the expression profile of a wheat aci-reductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses. Plant Physiol Biochem. 2010;48:461–8.

    CAS  PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004;37:528–38.

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci. 2005;10:88–94.

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Takat N, Uemura M, Kawamura Y. Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J Biol Chem. 2010;285:23165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CY, Shang HS, Li ZQ. Change of nitrogen in wheat leaves infected by stripe rust fungi. Acta Agric Beoreali-occidentalis Sin. 1991;S1:18–22.

    Google Scholar 

  • Yang H, Li Y, Hua J. The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J. 2006a;48:238–48.

    CAS  PubMed  Google Scholar 

  • Yang S, Yang H, Grisa WP, Sanchatjate S, Fink GR, Sun Q, Hua J. The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J. 2006b;45:166–79.

    CAS  PubMed  Google Scholar 

  • Yang H, Yang S, Li Y, Hua J. The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol. 2007;145:135–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WQ, Lai Y, Li MN, Xu WY, Xue YB. A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant. 2008;1:770–85.

    CAS  PubMed  Google Scholar 

  • Yang YH, Zhao J, Liu P, Xing HJ, Li CC, Wei GR, Kang ZS. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS One. 2013;8:e81756.

    Google Scholar 

  • Yang YH, Zhao J, Xing HJ, Wang JY, Zhou K, Zhan GM, et al. Different non-host resistance responses of two rice subspecies, japonica and indica, to Puccinia striiformis f. sp tritici. Plant Cell Rep. 2014;33:423–33.

    PubMed  Google Scholar 

  • Yang YH, Yu Y, Bi CW, Kang ZS. Quantitative proteomics reveals the defense response of wheat against Puccinia striiformis f. sp. tritici. Sci Rep. 2016;6:34261.

    Google Scholar 

  • Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 2007;8:R96.

    PubMed  PubMed Central  Google Scholar 

  • Yao JN, Zhang HC, Zhao J, Han QM, Cheng YL, Huang LL, Kang ZS. Histological and ultrastructural observation of teliospore formation in Puccinia striiformis f. sp. tritici. Mycosystema. 2012;31:560–6.

    Google Scholar 

  • Yin CT, Chen XM, Wang XJ, Han QM, Kang ZS, Hulbert S. Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. BMC Genomics. 2009;10:626.

    PubMed  PubMed Central  Google Scholar 

  • Yin CT, Jurgenson JE, Hulbert SH. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact. 2011;24:554–61.

    CAS  PubMed  Google Scholar 

  • Yin CT, Park JJ, Gang DR, Hulbert SH. Characterization of traptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathoenicity. Mol Plant-Microbe Interact. 2014;27:227–35.

    CAS  PubMed  Google Scholar 

  • Yin SN, Wang CF, Jiao M, Li F, Han QM, Huang LL, Zhang HC, Kang ZS. Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici. Protoplasma. 2015;252:103–16.

    CAS  PubMed  Google Scholar 

  • Yin SN, Gao ZJ, Wang CF, Huang LL, Kang ZS, Zhang HC. Nitric oxide and reactive oxygen species coordinately regulate the germination of Puccinia striiformis f. sp. tritici urediniospores. Front Microbiol. 2016;7:178.

    Google Scholar 

  • Ying JS. Berberidaceae. In: The Editorial Committee of Flora of China (ed) Flora of China, Vol. 29. Beijing: Science Press; 2001. pp 54–249.

    Google Scholar 

  • Yu YH, Xia Xin Li, Yin WL, Zhang HC. Comparative genomics analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul. 2007;52:101–10.

    CAS  Google Scholar 

  • Yu XM, Yu XD, Qu ZP, Huang XJ, Guo J, Han QM, Zhao J, Huang LL, Kang ZS. Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus. Gene. 2008;407:193–8.

    CAS  PubMed  Google Scholar 

  • Yu X, Wang X, Wang C, Chen X, Qu Z, Yu X, Han Q, Zhao J, Guo J, Huang L, Kang Z. Wheat defense genes in fungal (Puccinia striiformis) infection. Funct Integr Genomics. 2010;10:227–39.

    CAS  PubMed  Google Scholar 

  • Yu XM, Wang XJ, Huang XJ, Buchenauer H, Han QM, Guo J, Zhao J, Qu ZP, Huang LL, Kang ZS. Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Mol Biol Rep. 2011;38:3447–54.

    CAS  PubMed  Google Scholar 

  • Zenser N, Ellsmore A, Leasure C, Callis J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci U S A. 2001;98:11795–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shang HS, Li ZQ. Changes in polyribosome and protein synthesis of wheat leaves in the early stage of stripe-rust infection. Acta Phys Sin. 1994;20:339–45.

    CAS  Google Scholar 

  • Zhang HC, Han QM, Wang CF, Huang LL, Zhang QQ, Kang ZS. Histology and ultrastructure of resistant mechanism of a new wheat material Yilipu to Puccinia striiformis. Acta Phys Sin. 2008a;38:153–64.

    Google Scholar 

  • Zhang Y, Qu Z, Zheng W, Liu B, Wang X, Xue X, et al. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genomics. 2008b;9:203.

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang G, Xia N, Wang XJ, Huang LL, Kang ZS. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol. 2008c;73:88–94.

    CAS  Google Scholar 

  • Zhang G, Dong YL, Zhang Y, Li YM, Wang XJ, Han QM, Guo J, Huang LL, Kang ZS. Cloning and characterization of a novel hypersensitive induced-reaction gene from wheat infected by stripe rust pathogen. J Phytopathol. 2009;157:722–8.

    CAS  Google Scholar 

  • Zhang G, Li YM, Zhang Y, Dong YL, Wang XJ, Wei GR, Huang LL, Kang ZS. Cloning and characterization of a pathogenesis related protein gene TaPR10 from wheat induced by stripe rust pathogen. Agric Sci China. 2010;9:549–56. (in Chinese)

    Google Scholar 

  • Zhang LX, Li ZF, Quan RD, Li GJ, Wang RG, Huang RF. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol. 2011a;157:854–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol. 2011b;75:93–105.

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell. 2011c;42:356–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HC, Wang CF, Chen YL, Chen XM, Han QM, Huang LL, Wei GR, Kang ZS. Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Rep. 2012;31:2121–37.

    CAS  PubMed  Google Scholar 

  • Zhang G, Sun YF, Li YM, Dong YL, Huang XL, Yu YT, Wang JM, Wang XM, Wang XJ, Kang ZS. Characterization of a wheat C2 domain protein encoding gene regulated by stripe rust and abiotic stresses. Biol Plant. 2013;57:701–10.

    CAS  Google Scholar 

  • Zhao J, Wang L, Wang ZY, Chen XM, Zhang HC, Yao JN, Zhan GM, Chen W, Huang LL, Kang ZS. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology. 2013;103:927–34.

    PubMed  Google Scholar 

  • Zhao J, Yang YH, Kang ZS. Proteomic analysis of rice nonhost resistance to Puccinia striiformis f. sp. tritici using two-dimensional electrophoresis. Int J Mol Sci. 2014;15:21644–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhao SL, Peng YL, Qin JF, Huang LL, Kang ZS. Investigation on geographic distribution and identification of six Berberis spp. serving as alternate host for P. striiformis f. sp. tritici in Linzhi, Tibet. Acta Phys Sin. 2016;46:103–11.

    Google Scholar 

  • Zheng W, Huang L, Huang J, Wang X, Chen X, Zhao J, Guo J, Zhuang H, Qiu C, Liu J, Liu H, Huang X, Pei G, Zhan G, Tang C, Cheng Y, Liu M, Zhang J, Zhao Z, Zhang S, Han Q, Han D, Zhang H, Zhao J, Gao X, Wang J, Ni P, Dong W, Yang L, Yang H, Xu JR, Zhang G, Kang Z. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun. 2013;4:2673.

    PubMed  PubMed Central  Google Scholar 

  • Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D, Zhang X. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J. 2007;52:420–34.

    CAS  PubMed  Google Scholar 

  • Zhou L, Cheung MY, Li MW, Fu Y, Sun Z, Sun SSM, Lam HM. Rice Hypersensitive Induced Reaction Protein 1(OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. BMC Plant Biol. 2010;10:290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet. 2014;127:935–45.

    CAS  PubMed  Google Scholar 

  • Zuo H, Wang J, Hao CZ, Zhang B, Ma Q. Histochemical response of nonhost resistance in pepper to the stripe rust fungus (Puccinia striiformis f. sp tritici). J Plant Pathol. 2013;95:275–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kang, Z. et al. (2017). Wheat-Puccinia striiformis Interactions. In: Chen, X., Kang, Z. (eds) Stripe Rust. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1111-9_3

Download citation

Publish with us

Policies and ethics