Skip to main content

Change in Southern Hemisphere Intertidal Communities Through Climate Cycles: The Role of Dispersing Algae

  • Chapter
  • First Online:
Book cover Seaweed Phylogeography

Abstract

Macroalgae are fundamental components of most marine ecosystems, creating habitat and food sources for a wide range of other organisms. Macroalgal distributions are strongly linked to water temperature, and global environmental change is therefore likely to drive major shifts both in the distributions and compositions of marine communities. Phylogeographic research on macroalgae and associated organisms can reveal ecological changes that have occurred with global warming since the Last Glacial Maximum (LGM), which can help us to predict what might happen under future climate change scenarios. Such research shows that many macroalgae have changed their distributions, broadly shifting poleward or into deeper waters. Importantly, for organisms to change their distributions in response to climate change, they must be able to disperse, sometimes long distances. Some buoyant, robust macroalgae are extremely good long-distance travellers, and others have apparently been able to disperse across oceans indirectly, such as via rafting. However, not all macroalgal species are capable of long-distance dispersal, and with global warming, ecosystems thus do not simply slide poleward in their entireties, but both move and change. Studies are already showing that contemporary climate change is affecting the distributions of macroalgal-dominated ecosystems. This chapter summarizes some of the ways in which Southern Hemisphere macroalgal distributions are inferred to have shifted with past climate change, and speculates on how they might change in the future. Processes underpinning these changes, such as climate drivers and dispersal capacity, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH, Steneck RS. Thermogeography over time creates biogeographic reions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol. 2001;37(5):677–98.

    Article  Google Scholar 

  • Barnes DKA. The influence of ice on polar nearshore benthos. J Mar Biol Assoc U K. 1999;79(3):401–7.

    Article  Google Scholar 

  • Boedeker C, Ramirez ME, Nelson WA. Cladophoropsis brachyartra from southern South America is a synonym of Wittrockiella lyallii (Cladophorophyceae, Chlorophyta), previously regarded as endemic to New Zealand. Phycologia. 2010;49(6):525–36.

    Article  Google Scholar 

  • Bolton J. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res. 2010;64(4):263–79.

    Article  Google Scholar 

  • Bolton JJ, Anderson RJ, Smit AJ, Rothman MD. South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. Afr J Mar Sci. 2012;34(1):147–51.

    Article  Google Scholar 

  • Boo GH, Mansilla A, Nelson W, Bellgrove A, Boo SM. Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat Bot. 2014;119:73–9.

    Article  Google Scholar 

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE. Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci. 1996;8(1):3–6.

    Google Scholar 

  • Buchanan J, Zuccarello GC. Decoupling of short- and long-distance dispersal pathways in the endemic New Zealand seaweed Carpophyllum maschalocarpum (Phaeophyceae, Fucales). J Phycol. 2012;48(3):518–29.

    Article  CAS  Google Scholar 

  • Burkepile DE, Hay ME. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology. 2006;87(12):3128–39.

    Article  PubMed  Google Scholar 

  • Bussolini LT, Waters JM. Genetic analyses of rafted macroalgae reveal regional oceanographic connectivity patterns. J Biogeogr. 2015;42(7):1319–26.

    Article  Google Scholar 

  • Chan SW, Cheang CC, Chirapart A, Gerung G, Tharith C, Ang P. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation. PLoS ONE. 2013;8(10):e77662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.

    Article  CAS  PubMed  Google Scholar 

  • Chenelot H, Jewett S, Hoberg M. Macrobenthos of the nearshore Aleutian Archipelago, with emphasis on invertebrates associated with Clathromorphum nereostratum (Rhodophyta, Corallinaceae). Mar Biodiv. 2011;41(3):413–24.

    Article  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM. The Last Glacial Maximum. Science. 2009;325(5941):710–4.

    Article  CAS  PubMed  Google Scholar 

  • CLIMAP. 1981. Seasonal reconstructions of the Earth’s surface at the Last Glacial Maximum. Map and Chart Series MC-36. Boulder, Colorado.

    Google Scholar 

  • Collins CJ, Fraser CI, Ashcroft A, Waters JM. Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol Ecol. 2010;19(20):4572–80.

    Article  PubMed  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 2000;408(6809):184–7.

    Article  CAS  PubMed  Google Scholar 

  • Cumming RA, Nikula R, Spencer HG, Waters JM. Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting? J Biogeogr. 2014;41(12):2357–70.

    Article  Google Scholar 

  • Davis MB, Shaw RG. Range shifts and adaptive responses to Quaternary climate change. Science. 2001;292(5517):673–9.

    Article  CAS  PubMed  Google Scholar 

  • De’ath G, Fabricius K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl. 2010;20(3):840–50.

    Article  PubMed  Google Scholar 

  • Donald KM, Kennedy M, Spencer HG. Cladogenesis as the result of long-distance rafting events in South Pacific topshells (Gastropoda, Trochidae). Evolution. 2005;59(8):1701–11.

    Article  CAS  PubMed  Google Scholar 

  • Edgar GJ, Burton HR. The biogeography of shallow-water macrofauna at Heard Island. Pap Proc R Soc Tasman. 2000;133(2):23–6.

    Google Scholar 

  • Eriksson BK, Bergström L. Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuar Coast Shelf Sci. 2005;62(1–2):109–17.

    Article  Google Scholar 

  • Fine ML. Faunal variation on pelagic Sargassum. Mar Biol. 1970;7(2):112–22.

    Article  Google Scholar 

  • Fraser C, Thiel M, Spencer H, Waters J. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol. 2010;10(1):203.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci USA. 2009;106(9):3249–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser CI, Nikula R, Waters JM. Oceanic rafting by a coastal community. Proc R Soc Biol Sci Ser B. 2011;278:649–55.

    Article  Google Scholar 

  • Fraser CI. Is bull-kelp kelp? The role of common names in science. N Z J Mar Freshw Res. 2012a;46(2):279–84.

    Article  Google Scholar 

  • Fraser CI. The impacts of past climate change on sub-Antarctic nearshore ecosystems. Pap Proc R Soc Tasman. 2012b;146:89–93.

    Google Scholar 

  • Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE. 2013;8(7):e69138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser CI, Terauds A, Smellie J, Convey P, Chown SL. Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA. 2014;111(15):5634–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27(1):47–56.

    Article  PubMed  Google Scholar 

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E. Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol. 2010;56(1):115–24.

    Article  PubMed  Google Scholar 

  • González-Wevar CA, Saucède T, Morley SA, Chown SL, Poulin E. Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. Mol Ecol. 2013;22(20):5221–36.

    Article  PubMed  Google Scholar 

  • Graham MH, Dayton PK, Erlandson JM. Ice ages and ecological transitions on temperate coasts. Trends Ecol Evol. 2003;18(1):33–40.

    Article  Google Scholar 

  • Graham MH. Effects of local deforestation on the diversity and structure of southern California Giant Kelp forest food webs. Ecosystems. 2004;7(4):341–57.

    Article  Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Natl Acad Sci USA. 2007;104(42):16576–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M. Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar. 2013;56(1):3.

    Article  Google Scholar 

  • Gutow L, Gimenez L, Boos K, Saborowski R. Rapid changes in the epifaunal community after detachment of buoyant benthic macroalgae. J Mar Biol Assoc UK. 2009;89(2):323–8.

    Article  Google Scholar 

  • Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9(2):228–41.

    Article  PubMed  Google Scholar 

  • Haye PA, Varela AI, Thiel M. Genetic signatures of rafting dispersal in algal-dwelling brooders Limnoria spp. (Isopoda) along the SE Pacific (Chile). Mar Ecol Prog Ser. 2012;455:111–22.

    Article  Google Scholar 

  • Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405(6789):907–13.

    Article  CAS  PubMed  Google Scholar 

  • Huovinen P, Gomez I. Cold-temperate seaweed communities of the Southern Hemisphere. In: Wiencke C, Bischof K, editors. Seaweed biology, vol. 219., Ecological studiesBerlin: Springer; 2012. p. 293–313.

    Chapter  Google Scholar 

  • Jickells TD. Nutrient biogeochemistry of the coastal zone. Science. 1998;281(5374):217–22.

    Article  CAS  PubMed  Google Scholar 

  • Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 1997;78(7):1946–57.

    Article  Google Scholar 

  • Klemm MF, Hallam ND. Standing crop of Durvillaea antarctica (Chamisso) Hariot (Phaeophyta) on the Australian Sub-Antarctic Macquarie and Heard Islands. Phycologia. 1988;27(4):505–9.

    Article  Google Scholar 

  • Lambeck K, Chappell J. Sea level change through the Last Glacial Cycle. Science. 2001;292(5517):679–86.

    Article  CAS  PubMed  Google Scholar 

  • Macaya EC, Zuccarello GC. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser. 2010;420:103–12.

    Article  Google Scholar 

  • Macaya EC, Lopez B, Tala F, Tellier F, Thiel M. Flot and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Heidelberg: Springer; 2016.

    Google Scholar 

  • Mann KH. Seaweeds: their productivity and strategy for growth: the role of large marine algae in coastal productivity is far more important than has been suspected. Science. 1973;182(4116):975–81.

    Article  CAS  PubMed  Google Scholar 

  • Marx JM, Herrnkind WF. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull Mar Sci. 1985;36(3):423–31.

    Google Scholar 

  • McCook L, Jompa J, Diaz-Pulido G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs. 2001;19(4):400–17.

    Article  Google Scholar 

  • Mercier EC, Hamel J-F. Atlantic Ocean islands, coastal ecology. In: Schwartz ML, editor. Encyclopedia of Coastal Science. Dordrecht: Springer; 2005. p. 84–8.

    Google Scholar 

  • Moe RL, Silva PC. Antarctic marine flora: uniquely devoid of kelps. Science. 1977;196(4295):1206–8.

    Article  CAS  PubMed  Google Scholar 

  • Montecinos A, Broitman BR, Faugeron S, Haye PA, Tellier F, Guillemin ML. Species replacement along a linear coastal habitat: and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evol Biol. 2012;12:97.

    Article  PubMed Central  PubMed  Google Scholar 

  • Muangmai N, Fraser CI, Zuccarello GC (2015) Contrasting patterns of population structure and demographic history in cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand. J Phycol 51. doi:10.1111/jpy.12305.

    Google Scholar 

  • Nielsen S, Sand-Jensen K, Borum J, Geertz-Hansen O. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters. Estuaries. 2002;25(5):1025–32.

    Article  Google Scholar 

  • Nikula R, Fraser CI, Spencer HG, Waters JM. Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser. 2010;405:221–30.

    Article  CAS  Google Scholar 

  • Nikula R, Spencer HG, Waters JM. Passive rafting is a powerful driver of transoceanic gene flow. Biol Lett. 2013;9:20120821.

    Article  PubMed Central  PubMed  Google Scholar 

  • Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.

    Article  CAS  PubMed  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution shifts in marine fishes. Science. 2005;308(5730):1912–5.

    Article  CAS  PubMed  Google Scholar 

  • Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23(10):564–71.

    Article  PubMed  Google Scholar 

  • Rahmstorf S. A semi-empirical approach to projecting future sea-level rise. Science. 2007;315(5810):368–70.

    Article  CAS  PubMed  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M. Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol. 2011;405(1–2):33–41.

    Article  Google Scholar 

  • Rothäusler E, Gutow L, Thiel M. Floating seaweeds and their communities. In: Wiencke C, Bischof K, editors. Seaweed Biology, vol. 219., Ecological studiesHeidelberg: Springer; 2012. p. 359–80.

    Chapter  Google Scholar 

  • Sánchez-Moyano EJ, Estacio FJ, Garcı́a-Adiego EM, Carlos Garcı́a-Gómez J. Effect of the vegetative cycle of Caulerpa prolifera on the spatio-temporal variation of invertebrate macrofauna. Aquat Bot. 2001;70(2):163–74.

    Article  Google Scholar 

  • Schwarz A-M, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S. Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol. 2003;26(12):789–99.

    Article  Google Scholar 

  • Smale DA, Wernberg T. Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B: Biol Sci. 2013;280(1754):20122829.

    Article  Google Scholar 

  • Smith SDA. Evaluating stress in rocky shore and shallow reef habitats using the macrofauna of kelp holdfasts. J Aquat Ecosyst Stress Recovery. 2000;7(4):259–72.

    Article  Google Scholar 

  • Smith SDA. Kelp rafts in the Southern Ocean. Glob Ecol Biogeogr. 2002;11(1):67–9.

    Article  Google Scholar 

  • Smith SDA, Simpson RD. Spatial variation in the community structure of intertidal habitats at Macquarie Island (sub-Antarctic). Antarct Sci. 2002;14(4):374–84.

    Article  Google Scholar 

  • Springer YP, Hays CG, Carr MH, Mackey MR. Toward ecosystem-based management of marine macroalgae—the Bull Kelp, Nereocystis luetkeana. Oceanogr Mar Biol. 2010;48:1–41.

    Article  Google Scholar 

  • Staehr PA, Wernberg T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J Phycol. 2009;45(1):91–9.

    Article  CAS  Google Scholar 

  • Stewart JR, Lister AM. Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol. 2001;16(11):608–13.

    Article  Google Scholar 

  • Tala F, Gómez I, Luna-Jorquera G, Thiel M. Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in northern-central Chile (30°S). Mar Biol. 2013;160(6):1339–51.

    Article  CAS  Google Scholar 

  • Taylor DI, Schiel DR. Self-replacement and community modification by the southern bull kelp Durvillaea antarctica. Mar Ecol Prog Ser. 2005;288:87–102.

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE. Extinction risk from climate change. Nature. 2004;427(6970):145–8.

    Article  CAS  PubMed  Google Scholar 

  • Trend-Staid M, Prell WL. Sea surface temperature at the Last Glacial Maximum: a reconstruction using the modern analog technique. Paleoceanography. 2002;17(4):1065.

    Article  Google Scholar 

  • Underwood AJ, Jernakoff P. The effects of tidal height, wave-exposure, seasonality and rock-pools on grazing and the distribution of intertidal macroalgae in New South Wales. J Exp Mar Biol Ecol. 1984;75(1):71–96.

    Article  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD. Seaweed communities in retreat from ocean warming. Curr Biol. 2011;21(21):1828–32.

    Article  CAS  PubMed  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change. 2013;3(1):78–82.

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ. A review of the potential impacts of climate change on surface water quality. Hydrol Sci J. 2009;54(1):101–23.

    Article  Google Scholar 

  • Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK. Timing of the Last Glacial Maximum from observed sea-level minima. Nature. 2000;406(6797):713–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hu Zi-Min provided feedback on early drafts. Quentin Slade (National Library of Australia) helped with obtaining map resources. The author was supported by an Australian Research Council Discovery Early Career Research Award (DE140101715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceridwen I. Fraser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fraser, C.I. (2016). Change in Southern Hemisphere Intertidal Communities Through Climate Cycles: The Role of Dispersing Algae. In: Hu, ZM., Fraser, C. (eds) Seaweed Phylogeography. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7534-2_5

Download citation

Publish with us

Policies and ethics