Skip to main content

Changing Influences Between Life and Limestones in Earth History

  • Chapter
Coral Reefs in the Anthropocene

Abstract

Coral reefs are among the most beautiful, diverse and fascinating ecosystems in the modern oceans. For anyone intrigued by reefs, their geologic history is a never-ending mystery series, complete with paradoxes to unravel and mass “murders” to solve given only partial texts and enigmatic clues. Limestones not only record much of the history of life on Earth, they are a major reason why life occurs on Earth! Moreover, they “go missing” at catastrophic events that, on several occasions, caused extinctions of more than half of all multicellular species. The production and preservation of reef limestones is intimately connected to the Earth’s biogeochemical cycles, especially of carbon, oxygen, nitrogen and phosphorus. Continental collisions, changes in sea-floor spreading rates, massive meteor impacts, and glacial-interglacial cycles with resulting changes in sea level, are all subplots in the history of reefs. The evolution of photosynthesis that triggered the first global “pollution” event, the escalation of predation as indicated by increasing prevalence of shells, and the ubiquitous and repeated development of mutualistic symbioses, provide analogies to modern environmental challenges. The Earth’s biogeochemical cycles, which have evolved over more than 4,000 million years, have been profoundly disrupted by human activities. Carbon dioxide in the atmosphere, for example, has increased more over the past 200 years than it did between glacial advances and retreats. Within this century, atmospheric CO2 concentrations will rise to levels comparable to those 40–50 million years ago. The records preserved in limestones can provide scientists and policy makers with insights into likely consequences of human activities for the future not only of reefs, but of the diversity of ecosystems on Earth.

Extinction is forever.

(Anonymous)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CG, Lee DE, Rosen BR (1991) Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeogr Palaeoclimatol Palaeoecol 77:289–313

    Article  Google Scholar 

  • Agawin NSR, Duarte GM (2002) Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries 25:1205–1209

    Article  Google Scholar 

  • Alvarez W (2003) Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology 3:153–161

    Article  PubMed  Google Scholar 

  • Axelrod DI (1992) What is an equable climate. Palaeogeogr Palaeoclimatol Palaeoecol 91:1–12

    Article  Google Scholar 

  • Barash MS (2012) Mass extinction of ocean organisms at the Paleozoic-Mesozoic boundary: effects and causes. Oceanology 52:238–248

    Article  Google Scholar 

  • Bathurst RGC (1976) Carbonate sediments and their diagenesis. Elsevier, Amsterdam, p 658

    Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    Article  CAS  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Sci Rev 67:219–265

    Article  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci U S A 102:1302–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, p 150

    Google Scholar 

  • Berner RA (2006) Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am J Sci 306:295–302

    Article  CAS  Google Scholar 

  • Bernhard JM, Edgcomb VP, Visscher PT, McIntyre-Wressnig A, Summons RE, Bouxsein ML, Louis L, Jeglinski M (2013) Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. Proc Natl Acad Sci U S A 110:9830–9834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharji S, Chatterjee N, Wampler JM, Nayak PN, Deshmukh SS (1996) Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: evidence from mafic dike swarms. J Geol 104:379–398

    Article  CAS  Google Scholar 

  • Bryan JR (1991) A Paleocene coral-algal-sponge reef from southwestern Alabama and the ecology of early Tertiary reefs. Lethaia 24:423–438

    Article  Google Scholar 

  • Camoin GF, Davies PJ (eds) (1998) Reefs and carbonate platforms in the Pacific and Indian Oceans. International Association of Sedimentologists, London, Blackwell Science, London, Spec Publ 25, 336 pp

    Google Scholar 

  • Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723

    Article  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of banded-iron formation. Econ Geol 68:1135–1143

    Article  CAS  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151–187

    Article  CAS  Google Scholar 

  • Condie KC (1989) Origin of the Earth’s crust. Palaeogeogr Palaeoclimatol Palaeoecol 75:57–81

    Article  Google Scholar 

  • Conway Morris S (1993) The fossil record and the early evolution of the Metazoa. Nature 361:219–225

    Article  Google Scholar 

  • Copper P (1994) Ancient reef ecosystem expansion and collapse. Coral Reefs 13:3–11

    Article  Google Scholar 

  • Copper P (2002) Silurian and Devonian reefs: 80 million years of global greenhouse betwee two ice ages. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 181–238

    Chapter  Google Scholar 

  • Crevello PD, Wilson JL, Sarg JF, Read JF (eds) (1989) Controls on carbonate platform and Basin Development. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, Spec Publ 44, 405 pp

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  CAS  PubMed  Google Scholar 

  • Delmas RJ (1992) Environmental information form ice cores. Rev Geophys 30:1–21

    Article  Google Scholar 

  • Dill RF, Shinn EA, Jones AT et al (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Dobretsov N, Kochanov N, Rozanov A, Zavarzin G (eds) (2008) Biosphere origin and evolution. Springer, New York, 427 pp

    Google Scholar 

  • Drake MJ (2000) Accretion and primary differentiation of the Earth: a personal journey. Geochim Cosmochim Acta 64:2363–2369

    Article  CAS  Google Scholar 

  • Edinger EN, Risk MJ (1994) Oligocene-Miocene extinction and geographic restriction of Caribbean corals – roles of turbidity, temperature and nutrients. Palaios 9:576–598

    Article  Google Scholar 

  • Eyles N (1993) Earth’s glacial record and its tectonic setting. Earth-Sci Rev 35:1–248

    Article  Google Scholar 

  • Fagerstrom JA (1987) The evolution of reef communities. Wiley, New York, 600 pp

    Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 2:39–47

    Google Scholar 

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep-water carbonate environments, Spec Publ 25. SEPM (Society for Sedimentary Geology), Tulsa, pp 19–50

    Chapter  Google Scholar 

  • Flower BP (1999) Paleoclimatology – warming without high CO2? Nature 399:313–314

    Article  CAS  Google Scholar 

  • Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 391–463

    Chapter  Google Scholar 

  • Frakes LA, Francis JE (1988) A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333:547–548

    Article  Google Scholar 

  • Frost SH (1977) Cenozoic reef systems of Caribbean – prospects for paleoecologic synthesis. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates – ecology and sedimentology. Am Assoc Petrol Geol, Tulsa, OK, Stud Geol 4:93–110

    Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CLA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    Article  CAS  PubMed  Google Scholar 

  • Gilliland RL (1989) Solar evolution. Palaeogeogr Palaeoclimatol Palaeoecol 75:35–55

    Article  Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Grant J, Gust G (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature 330:244–246

    Article  Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development, Spec Publ 44. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 79–106

    Chapter  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Ann Rev Earth Planet Sci 27:313–358

    Article  CAS  Google Scholar 

  • Hallam A (1985) Jurassic molluscan migration and evolution in relation to sea level changes. In: Friedman GM (ed) Sedimentary and evolutionary cycles. Springer, Berlin, pp 4–5

    Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471

    Article  Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 62:275–291

    Article  Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sedimentation, nutrients, and global change. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef ecosystems. Kluwer Academic/Plenum Publishers, New York, pp 387–427

    Chapter  Google Scholar 

  • Hallock P (2011) Modern coral reefs under global change: new opportunities to understand carbonate depositional hiatuses. In: Stanley GD Jr (ed) Corals and reefs: crises, collapse and change. The Paleontological Society Papers 17:121–130

    Google Scholar 

  • Hallock P, Peebles MW (1993) Foraminifera with chlorophyte endosymbionts: habitats of six species in the Florida Keys. Mar Micropaleontol 20:277–292

    Article  Google Scholar 

  • Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeoclimatol Palaeoecol 83:49–64

    Article  Google Scholar 

  • Harbaugh JW (1974) Stratigraphy and the geologic time scale. Brown Publishers, Dubuque, 136 pp

    Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24:279–283

    Article  CAS  Google Scholar 

  • Haug GH, Tiedemann R, Zahn R, Ravelo AC (2001) Role of Panama uplift on oceanic freshwater balance. Geology 29:207–210

    Article  CAS  Google Scholar 

  • Höfling R, Scott RW (2002) Early and mid-Cretaceous buildups. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 521–548

    Chapter  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B Biol Sci 361:903–915

    Article  CAS  Google Scholar 

  • James NP (1983) Reefs. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol, Tulsa, Memoir 33:345–462

    Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates, Spec. Publ. No. 56. SEPM (Society for Sedimentary Geology), Tulsa, pp 1–20

    Chapter  Google Scholar 

  • James NP, Clarke JAD (eds) (1997) Cool-water carbonates. SEPM (Society for Sedimentary Geology), Tulsa, Spec. Publ. No. 56, 440 pp

    Google Scholar 

  • Johnson CC, Sanders D, Kauffman EG, Hay WW (2002) Patterns and processes influencing upper Cretaceous reefs. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM (Society for Sedimentary Geology), Tulsa, pp 549–585, Spec Publ 72

    Chapter  Google Scholar 

  • Kauffman EG, Johnson CC (1988) The morphological and ecological evolution of middle and upper Cretaceous reef building rudistids. Palaios 3:194–126

    Article  Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice-Hall, Englewood Cliffs, 813 pp

    Google Scholar 

  • Kiessling W (2001) Phanerozoic reef trends based on the Paleoreef Database. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef ecosystems. Kluwer Academic/Plenum Publishers, New York, pp 41–88

    Chapter  Google Scholar 

  • Kiessling W, Flügel E, Golonka J (eds) (2002) Phanerozoic reef patterns. SEPM (Society for Sedimentary Geology), Tulsa, Spec Publ 72:775 pp

    Google Scholar 

  • Kinsey DW, Hopley D (1991) The significance of coral reefs as global carbon sinks–response to Greenhouse. Palaeogeogr Palaeoclimatol Palaeoecol 89:363–377

    Article  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B Biol Sci 361:1023–1038

    Article  CAS  Google Scholar 

  • Lathuiliére B, Marchal D (2009) Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova 21:57–66

    Article  CAS  Google Scholar 

  • Lees A (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Mar Geol 19:159–198

    Article  Google Scholar 

  • Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns–the expression of a changing globe. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 465–520

    Chapter  Google Scholar 

  • Logan BW, Read JF, Hagan GM et al (1974) Evolution and diagenesis of Quaternary carbonate sequences, Shark Bay, Western Australia. Am Assoc Petrol Geol Mem 22:358 pp

    Google Scholar 

  • Lovelock JE (2000) The ages of Gaia: a biography of our living earth. Oxford University Press, Oxford, p 267

    Google Scholar 

  • Lutz BP (2010) Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7:151–176

    Google Scholar 

  • Mackenzie FT, Anderssen AJ (2013) The marine carbon system and ocean acidification during Phanerozoic Time. Geochem Pers 2:227 pp

    Google Scholar 

  • MacLeod N, Keller G (1996) Cretaceous-tertiary mass extinctions: biotic and environmental changes. W. W. Norton and Company, New York, 575 pp

    Google Scholar 

  • Maier-Reimer E, Mikalojewicz U, Crowley T (1990) Ocean GCM sensitivity experiment with an open Central American isthmus. Paleoceanography 5:349–366

    Article  Google Scholar 

  • Margulis L (1993) Symbiosis and cell evolution, 2nd edn. Freeman, New York, 419 pp

    Google Scholar 

  • Martindale RC, Berelson WM, Corsetti FA, Bottjer DJ, West AJ (2012) Constraining carbonate chemistry at a potential ocean acidification event (the Triassic-Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 350:114–123

    Article  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • Milliman JD (1974) Marine carbonates. Springer, Berlin, 375 pp

    Google Scholar 

  • Monty CLV (1995) The rise and nature of carbonate mud-mounds: an introductory actualistic approach. Int Assoc Sedimentol Spec Publ 23:11–48

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, New York, 707 pp

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Nisancioglu KH, Raymo ME, Stone PH (2003) Reorganization of Miocene deep-water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 18: art. #1006

    Google Scholar 

  • Och LM, Shields-Zhou GA (2012) The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Sci Rev 110:26–57

    Article  CAS  Google Scholar 

  • Officer CB, Drake CL (1985) Terminal cretaceous environmental events. Science 227:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Pagani M, Caldeira K, Berner R, Beerling DJ (2009) The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460:85–94

    Article  CAS  PubMed  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Pearson PN, Ditchfield PW, Singano J, Harcourt-Brown KG, Nicholas CJ, Olsson RK, Shackleton NJ, Hall MA (2001) Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature 413:481–487

    Article  CAS  PubMed  Google Scholar 

  • Pentecost A (1991) Calcification processes in algae and cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, New York, pp 3–20

    Chapter  Google Scholar 

  • Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 587–621

    Chapter  Google Scholar 

  • Pierrehumbert RT, Abbot DS, Voigt A, Koll D (2011) Climate of the neoproterozoic. Ann Rev Earth Planet Sci 39:417–460

    Article  CAS  Google Scholar 

  • Plaziat JC, Perrin C (1992) Multikilometer sized reefs built by foraminiferans (Solenomeris) from the early Eocene of the Pyrenean domain (S France, N Spain): paleoecologic relations with coral reefs. Palaeogeogr Palaeoclimatol Palaeoecol 96:195–232

    Article  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  PubMed  Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Article  Google Scholar 

  • Pomar L, Hallock P (2008) Carbonate factories: a conundrum in sedimentary geology. Earth-Sci Rev 87:134–169

    Article  Google Scholar 

  • Pomar L, Morsilli M, Hallock P, Bádenas B (2012) Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Sci Rev 111:56–81

    Article  Google Scholar 

  • Raymo ME (1994) The initiation of northern hemisphere glaciation. Ann Rev Earth Planet Sci 22:353–383

    Article  Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma-Cays, Bahamas – uncommonly common. Facies 33:1–17

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  CAS  PubMed  Google Scholar 

  • Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324

    Google Scholar 

  • Riding R (ed) (1991) Calcareous algae and stromatolites. Springer, New York, 571 pp

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1):179–214

    Article  CAS  Google Scholar 

  • Riding R (2004) Solenopora is a chaetetid sponge, not an alga. Palaeontology 47:117–122

    Article  Google Scholar 

  • Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings – a biologically induced calcium carbonate precipitation mechanism. Geology 20:464–468

    Article  CAS  Google Scholar 

  • Rosen BR (1998) Corals, reefs, algal symbiosis and global change: the Lazarus factor. In: Culver SJ, Rawson PF (eds) Biotic response to global change: the last 145 million years. Chapman & Hall, London, pp 164–180

    Google Scholar 

  • Rosenquist J, Chassefiere E (1995) Inorganic-chemistry of O2 in a dense primitive atmosphere. Planet Space Sci 43:3–10

    Article  Google Scholar 

  • Rowland SM, Shapiro RS (2002) Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 95–128

    Chapter  Google Scholar 

  • Sandberg P (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  CAS  Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull Part 1 92:197–211

    Article  Google Scholar 

  • Schlager W (2000) Sedimentation rates and growth potential of tropical, cool water and mud mound carbonate factories. Geol Soc Lond Spec Publ 178:217–227

    Article  Google Scholar 

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  CAS  Google Scholar 

  • Scholle PA, Bebout DG, Moore CH (eds) (1983) Carbonate depositional environments. American Association of Petroleum Geologists, Tulsa, Memoir 33, 708 pp

    Google Scholar 

  • Scotese CR (2002) http://www.scotese.com (PALEOMAP website)

  • Seibold E, Berger WH (2010) The sea floor: an introduction to marine geology, 3rd edn. Springer, Berlin/New York/Heidelberg, 288 pp

    Google Scholar 

  • Skelton PW (1976) Functional morphology of the Hippuritidae. Lethaia 9:83–100

    Article  Google Scholar 

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59(SI):81–117

    Article  CAS  Google Scholar 

  • Skelton PW, Gili E, Masse J-P (1992) Rudists as successful sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms: Fifth North Am Paleontol Conv Abstracts and Program, Paleontological Society Spec Publ 6:271

    Google Scholar 

  • Stanley GD Jr (1992) Tropical reef ecosystems and their evolution. Encycl Earth Syst Sci 4:375–388

    Google Scholar 

  • Stanley GD Jr (ed) (2001) The history and sedimentology of ancient reef ecosystems. Kluwer Academic/Plenum Publishers, New York, 458 pp

    Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Swart PK, Eberli GP, McKenzie J (eds) (2009) Perspective in carbonate geology: a tribute to the career of Robert Nathan Ginsburg, IAS Special Publication 41

    Google Scholar 

  • Toomey DF (ed) (1981) European fossil reef models. SEPM (Society for Sedimentary Geology), Tulsa, Spec Publ 30, 546 pp

    Google Scholar 

  • Vescei A, Berger WH (2004) Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition. Global Biogeochem Cycles 18(1):GB1035

    Google Scholar 

  • Veron JEN (2000) Corals of the world, vol 1. Australian Institute of Marine Science, Townsville, 463 pp

    Google Scholar 

  • Wahlman GP (2002) Upper Carboniferous–Lower Permian (Bashkirian-Kungarian) mounds and reefs. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 271–338

    Chapter  Google Scholar 

  • Webb GE (2001) Biologically induced carbonate precipitation in reefs through time. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef ecosystems. Kluwer Academic/Plenum Publishers, New York, pp 159–204

    Chapter  Google Scholar 

  • Webb GE (2002) Latest Devonian and early Carboniferous reefs: depressed reef building after the middle Paleozoic collapse. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 239–269

    Chapter  Google Scholar 

  • Webby BD (2002) Patterns of Ordovician reef development. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 129–179

    Chapter  Google Scholar 

  • Weidlich O (2002) Middle and late Permian reefs – distributional patters and reservoir potential. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, Spec Publ 72. SEPM (Society for Sedimentary Geology), Tulsa, pp 339–390

    Chapter  Google Scholar 

  • Wells JW (1957) Coral reefs. In: Hedgpeth JW (ed) Treatise on marine ecology and paleoecology, vol 1, Ecology, memoir 67. The Geological Society of America, New York, pp 609–631

    Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Oxford, 426 pp

    Google Scholar 

  • Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658

    Article  Google Scholar 

  • Worsley TR, Nance RD, Moody JB (1986) Tectonic cycles and the history of the earth’s biogeochemical and paleoceanographic record. Paleoceanography 3:233–263

    Article  Google Scholar 

  • Yajnik KS, Swathi PS (2012) Inter-decadal trends in the annual cycles of atmospheric CO2 at Mauna Loa. Curr Sci 102:774–782

    CAS  Google Scholar 

  • Yuan XL, Xiao SH, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Hallock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hallock, P. (2015). Changing Influences Between Life and Limestones in Earth History. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_2

Download citation

Publish with us

Policies and ethics