Skip to main content

Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest

  • Chapter
Tropical Forest Canopies: Ecology and Management

Part of the book series: Forestry Sciences ((FOSC,volume 69))

Abstract

Understanding spatio-temporal patterns in rainfall received beneath tropical forest is required for eco- hydrological modelling of soil-water status, river behaviour, soil erosion, nutrient loss and wet-canopy evaporation. As selectivelogging of tropical forest leaves a very complex mosaic of canopy types, it is likely to add to the spatio-temporal complexity of this sub-canopy or net precipitation. As a precursor to addressing this problem, the analysis presented here will examine the two dominant biophysical controls on sub-canopy precipitation. These controls are: (a) the spatial and temporal patterns in above-canopy or gross rainfall, and (b) the rate of wet-canopy evaporation associated with each type of canopy structure created by selective-forestry. For this study, over 400 raingauges were installed within a 10 km2 area of lowland dipterocarp forest affected by selective-forestry some 9-years prior to this work. Gauges were located beneath various canopy types and within large openings. The spatial distribution of gross rainfall (monitored within the openings) was modelled using variography, while the effects of different canopy types on sub-canopy preciptation was analysed by comparing 6-month totals. The temporal distribution of gross rainfall over an 11-year record collected at the same site (Danum Valley Field Centre) was modelled with Data-Based-Mechanistic (DBM) approaches. These DBM approaches were also applied to the rainfall time-series of the two adjacent meteorological stations; all three gauges being contained within a 5000 km2 region of Eastern Sabah in Malaysian Borneo.

Strong diurnal modulation was apparent within gross rainfall for the inland rainforest site, with a distribution consistent with a dominance of local convective rain cells. A similarly strong cycle coincident with the periodicity of the El Niño-Southern Oscillation (ENSO) was present within all of the region’s rainfall records, though marked differences in annual and intra-annual seasonality were apparent. The preliminary variogram modelling indicated that a deterministic drift was present within the local-scale gross rainfall data, probably related to local topographic effects. Notwithstanding the need to remove this drift, the work indicated that spatial models of gross rainfall could be identified and used to interpret similar models of net-precipitation. During the ENSO drought-period monitored, the lowland dipterocarp forest allowed 91% of the gross rainfall to reach the ground as throughfall. These rates were, however, reduced to between 80%–86% beneath representative plots of moderately impacted to creeper-covered, highly damaged patches of forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asdak, C. Jarvis, P. G., van Gardingen, R. & Fraser, A. 1998. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. J. Hydrol. 206: 237–244.

    Article  Google Scholar 

  • Barry, R. G. & Chorley, R. J. 1982. Atmosphere, weather and climate. Fourth Edition. Methuen, London.

    Google Scholar 

  • Bellehumeur, C., Legendre, P. & Marcotte, D. 1997. Variance and spatial scales in tropical rain forest: Changing the size of sampling units. Plant Ecol. 130: 89–98.

    Article  Google Scholar 

  • Bidin, K. in preparation. Spatial and temporal structure of gross and net precipitation within a selectively-logged forest catchment. Unpublished Ph.D. thesis, University of Lancaster, Lancaster.

    Google Scholar 

  • Borga, M. & Vizzaccaro, A. 1997. On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging. J. Hydrol. 195: 160–171.

    Article  Google Scholar 

  • Brooks, S. M. & Spencer, T. 1995. Vegetation modification of rainfall characteristics: implications for rainfall erosivity following logging in Sabah, Malaysia. J. Trop. For. Sci. 7: 435–446.

    Google Scholar 

  • Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T. & Kotterink, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. J. Ecol. 81: 145–167.

    Article  Google Scholar 

  • Calder, I. R. 2001 Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecol. 153: 203–214 (this volume).

    Article  Google Scholar 

  • Chappell, N. A., Franks, S. W. & Larenus, J. 1998. Multi-scale permeability estimation for a tropical catchment. Hydrol. Process. 12: 1507–1523.

    Article  Google Scholar 

  • Chappell, N. A., McKenna, R, Bidin, K, Douglas, I, & Walsh, R. R. D. 1999a. Parsimonious modelling of water and suspended-sediment flux from nested-catchments affected by selective tropical forestry. Philos. Trans. R. Soc. Lond. Ser. B 354: 1831–1846.

    Article  CAS  Google Scholar 

  • Chappell, N. A., Ternan, J. L. & Bidin, K. 1999b. Correlation of physicochemical properties and sub-erosional landforms with aggregate stability variations in a tropical Ultisol disturbed by forestry operations. Soil Tillage Res. 50: 55–71.

    Article  Google Scholar 

  • Conway, S. 1982. Logging practices. Miller Freeman Publications, San Francisco.

    Google Scholar 

  • Dingman, S. L. 1994. Physical hydrology. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Discenza, A. R., Whittaker, J., & Chappell, N. A., in preparation. Stochastic modelling of tropical rainfall occurrence processes at daily and hourly time-scales.

    Google Scholar 

  • Douglas, I., Bidin, K., Balamurgam, G., Chappell, N. A., Walsh, R. P. D., Greer, T. & Sinun, W. 1992. The role of extreme events in the impacts of selective tropical forestry on erosion during harvesting and recovery phases at Danum Valley, Sabah. Philos. Trans. R. Soc. Lond. Ser. B 354: 1749–1761.

    Article  Google Scholar 

  • Douglas, I., Spencer, T., Greer, T., Bidin, K., Sinun, W. & Wong, W. M., 1992. The impact of selective commercial logging on stream hydrology, chemistry and sediment loads in the Ulu Segama Rain Forest, Sabah. Philos. Trans. R. Soc. Lond. Ser. B 335: 397–406.

    Article  CAS  Google Scholar 

  • Eschenbach, C., Glauner, R., Klein, M. and Kappen, I. 1998. Photosynthesis rates of selected tree species in lowland dipterocarp rain forest of Sabah, Malaysia. Trees-Struct. Funct. 12: 356–365.

    Article  Google Scholar 

  • Goodrich, D. C., Faurès, J-M., Woolhiser, D. A., Lane, L. J. & Sorooshian, S. 1995. Measurement and analysis of small-scale convective storm rainfall variability. J. Hydrol. 173: 283–308.

    Article  Google Scholar 

  • Henderson-Sellers, A., Dickinson, R. E., Durbridge, T. B., Kennedy, R. J., McGuffe, K. & Pitman, A. J. 1993. Tropical deforestation: modelling local to regional-scale climatic change. J. Geophys. Res. 98 (D4): 7289–7315.

    Article  Google Scholar 

  • Herwitz, S. R. 1985. Interception storage capacities of tropical rain forest trees. J. Hydrol. 77: 237–252.

    Article  Google Scholar 

  • Houze, R. A., Geotis, S. G., Marks, Jr., F. D. & West A. K. 1981. Winter monsoon convection in the vicinity of north Borneo. Part 1: structure and time variation of the clouds and precipitation. Mon. Weather Rev. 109: 1595–1614.

    Article  Google Scholar 

  • Johnson R. H. & Priegnitz, D. L. 1981. Winter monsoon convection in the vicinity of North Borneo. Part II. Effects on large-scale fields. Mon. Weather Rev. 109: 1619–1632.

    Google Scholar 

  • Journel, A. G. & Huijbregts, C. J. 1978. Mining geostatistics. Academic Press, New York.

    Google Scholar 

  • Kasran, B. 1989. Rainfall interception in dipterocarp forest of Penninsular Malaysia. Pp. 1–15. In: Regional seminar on tropical forest hydrology. Forest Research Institute of Malaysia, Kuala Lumpur.

    Google Scholar 

  • Kripalani, R. H. & Kulkarni, A. 1997. Rainfall variability over South-east Asia - connections with Indian monsoon and ENSO extremes: new perspectives. Int. J. Clim. 17: 1155–1168.

    Article  Google Scholar 

  • Kripalani, R. H. & Kulkarni, A. 1998. The relationship between some large-scale atmospheric parameters and rainfall over Southeast Asia: a comparison with features in India. Theor. Appl. Clim. 59: 1–11.

    Article  Google Scholar 

  • Lebel, T. and Le Barbé, L. 1997. Rainfall monitoring during HAPEX-Sahel. 2. Point and areal estimation at the event and seasonal scales. J. Hydrol. 188: 97–122.

    Article  Google Scholar 

  • Lloyd, C. R. 1990. The temporal distribution of Amazonian rainfall and its implications for forest interception. Quart. J. Roy. Meteorol. Soc. 116: 1487–1494.

    Article  Google Scholar 

  • Lloyd, C. R. Gash, J. H. C., Shuttleworth, W. J. & Marques Filho, A de O. 1988. The measurement and modelling of rainfall interception by Amazonian rain forest. J. Hydrol. 43: 277–294.

    Google Scholar 

  • Lyons, W. F. & Bonell, M. 1992. Daily mesoscale rainfall in the tropical wet/dry climate of the Townsville area, north-eastern Queensland during the 1988/89 wet season: synoptic scale airflow considerations. Int. J. Clim. 12: 655–684.

    Article  Google Scholar 

  • Madden, R. A. & Julian, P. R. 1972. Description of global scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29: 1109–1123.

    Article  Google Scholar 

  • Martin-Smith, K. 1999. Biodiversity patterns of tropical freshwater fish following selective timber extraction: a case study from Sabah, Malaysia. Ital. J. Zool. 65: 363–368.

    Article  Google Scholar 

  • Molióvâ, H. & Hubert, P. 1994. Canopy influence on rainfall fields’ microscale structure in tropical forests. J. Appl. Meteorol. 33: 1464–1467.

    Article  Google Scholar 

  • Newbery, D. McC., Campbell, E. J. F., Lee, Y. F., Ridsdale, C. E. & Still, M. J. 1992. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abundance and family composition. Philos. Trans. R. Soc. Lond. Ser. B. 335: 341–356.

    Article  Google Scholar 

  • Newell, R. E. & Gould-Stewart, S. 1981. A stratospheric fountain ? J. Atmos. Sci. 12: 2789–2796.

    Article  Google Scholar 

  • Noguchi, S., Nik, A. R., Sammori, T., Tani, M., & Tsuboyama, Y. 1996. Rainfall characteristics of tropical rain forest and temperate forest: comparison between Bukit Tarek, Peninsular Malaysia and Hitachi Ohta in Japan. J. Trop. For. Sci. 9: 206–220.

    Google Scholar 

  • Pannatier, Y. 1996. Variowin: software for spatial data analysis in 2D. Springer-Verlag, New York.

    Google Scholar 

  • Pinard, M. A. & F. E. Putz. 1996. Retaining forest biomass by reducing logging damage. Biotropica 28: 278–295.

    Article  Google Scholar 

  • Ramage, C. S. 1964. Diurnal variation of summer rainfall of Malaya. J. Trop. Geogr. 19: 62–68.

    Google Scholar 

  • Riehl, H. 1954. Tropical meteorology. McGraw-Hill, New York.

    Google Scholar 

  • Sherlock, M. D., 1997. Plot-scale hydrometric and tracer characterisation of soil water flow in two tropical rain forest catchments in Southeast Asia. Unpublished PhD thesis, Lancaster University.

    Google Scholar 

  • Shuttleworth, W. J. 1988. Evaporation from Amazonian rain forest. Proc. R. Soc. Ser. B 233: 321–346.

    Article  Google Scholar 

  • Sinun, W., Meng, W. W., Douglas, I. & Spencer, T. 1992. Through-fall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Sabah, Malaysia. Philos. Trans. R. Soc. Lond. Ser. B 233: 321–346.

    Google Scholar 

  • Talip, M. A., 1996. Using a Geographical Information System (GIS) to analyse land use changes in eastern Sabah, Malaysia. Unpublished M.Sc. thesis, University of Manchester, UK.

    Google Scholar 

  • Taylor, J. R. 1982. An introduction to error analysis. University Science Books, Mill Valley.

    Google Scholar 

  • Thompson, B. W. 1951. An essay on the general circulation of the atmosphere over South-East Asia and the West Pacific. Quart. J. Roy. Meteorol. Soc. 77: 569–597.

    Article  Google Scholar 

  • UNESCO. 1978. Tropical forest ecosystems (Chapter 12 ). UNESCO, Paris.

    Google Scholar 

  • Walsh, R. P. D. 1996. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12: 385–407.

    Article  Google Scholar 

  • Watts, I. E. M. 1955. Equatorial weather: with particular reference to Southeast Asia. University of London Press, London.

    Google Scholar 

  • Weickmann, K. M., Lussky, G. R. & Kutzbach, J. E. 1985. Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfuction during northern winter. Mon. Weather Rev. 111: 1838–1858.

    Google Scholar 

  • Whitmore, T. C. 1998. An introduction to tropical rain forests. Second Edition. Oxford University Press, Oxford.

    Google Scholar 

  • Wolter, K. & Timlin, M. S. 1998. Measuring the strength of ENSO–how does 1997/98 rank ? Weather 53: 315–324.

    Article  Google Scholar 

  • Wood, C. A. 1948. Report on the weather of the Borneo-Celebes region, 1946. Quart. J. Roy. Meteorol. Soc. 74: 144–160.

    Article  Google Scholar 

  • Young, P. C. 1998. Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environ. Modell. Softw. 13: 105–122.

    Article  Google Scholar 

  • Young, P. C., Pedregal, D. J., & Tych, W. 1999. Dynamic harmonic regression. J. Forecasting 18: 369–394.

    Article  Google Scholar 

  • Yusop, Z. 1996. Nutrient cycling in secondary rain forest catchments of Peninsular Malaysia. Unpublished Ph.D. thesis, University of Manchester, Manchester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chappell, N.A., Bidin, K., Tych, W. (2001). Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest. In: Linsenmair, K.E., Davis, A.J., Fiala, B., Speight, M.R. (eds) Tropical Forest Canopies: Ecology and Management. Forestry Sciences, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3606-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3606-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5724-2

  • Online ISBN: 978-94-017-3606-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics