Skip to main content

Invariant Tori in the Secular Motions of the Three-Body Planetary Systems

  • Conference paper
New Developments in the Dynamics of Planetary Systems

Abstract

We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun—Jupiter—Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

In memory of Michèle Moons

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-El-Ata, N. and Chapront, J.: 1975, ‘Développements analytiques de l’inverse de la distance en mécanique céleste’, Astr. Astrophys. 38, 57–66.

    ADS  MATH  Google Scholar 

  2. Arnold, V. I.: 1963, ‘Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian’, U.sp. Mat. Nauk 18, 13; Russ. Math. Surv. 18, 9–36.

    Article  Google Scholar 

  3. Arnold, V. I.: 1963, ‘Small denominators and problems of stability of motion in classical and celestial mechanics’. Usp. Math. Nauk 18(6), 91; Russ. Math. Sure 18 (6), 85.

    Article  Google Scholar 

  4. Arnold, V. I.: 1978, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.

    MATH  Google Scholar 

  5. Celletti, A. and Chierchia, L.: 1997, ‘On the stability of realistic three-body problems’, Comm. Math. Phys. 186 (2), 413–449.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Celletti, A., Giorgilli, A. and Locatelli, U.: 2000, ‘Improved estimates on the existence of invariant tori for Hamiltonian systems’, Nonlinearity 13, 397–412.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Giorgilli, A.: 1965, ‘Quantitative Methods in Classical Perturbation Theory’, in: A. E. Roy and B.D. Steves (eds), ‘Proceedings of the Nato ASI school ‘From Newton to Chaos: Modern Techniques for Understanding and Coping with Chaos in N-body Dynamical Systems’, Plenum Press, New York.

    Google Scholar 

  8. Giorgilli, A., Delshams, A., Fontich, E., Galgani, L. and Simò, C.: 1989, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Diff. Eq. 77, 167–198.

    Article  MATH  Google Scholar 

  9. Giorgilli, A. and Locatelli, U.: 1997, ‘Kolmogorov theorem and classical perturbation theory’, J. App. Math. Phys. (ZAMP) 48, 220 - -261.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gröbner, W.: 1973, Die Lie-Reihen und Ihre Anwendungen, Springer Verlag, Berlin (1960) (it. transi.: 1973, Le serie di Lie e le loro applicazioni, Cremonese, Roma.

    Google Scholar 

  11. Henon, M.: 1966, ‘Exploration numérique du problème restreint IV: Masses égales, orbites non périodiques’, Bull. Astronomique 3(1), fase. 2, 49–66.

    Google Scholar 

  12. Henrard, J.: 2000, ‘A note on a general algorithm for two-body expansions’, Celest. Mech. Dyn. Astr. 76, 283–289.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Koch, H., Schenkel, A. and Wittwer, R: 1996, ‘Computer-assisted proofs in analysis and programming in logic: a case study’, SIAM Rev. 38 (4), 565–604.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolmogorov, A. N.: 1954, ‘Preservation of conditionally periodic movements with small change in the Hamilton function’, Dokl. Akad. Nauk SSSR 98, 527–530. (English translation in Casati, G. and Ford, J. (eds): 1979, Lecture Notes in Physics, N. 93, 51–56 ).

    Article  MathSciNet  ADS  Google Scholar 

  15. Laskar, J.: 1988, ‘Secular evolution over 10 million years’, Aste Astrophys. 198, 341–362.

    ADS  Google Scholar 

  16. Laskar, J.: 1989, Les variables de Poincaré et le développement de la fonction perturbatrice,Groupe de travail sur la lecture des Méthodes nouvelles de la Mécanique Céleste, Notes scientifiques et techniques du Bureau des Longitudes S026.

    Google Scholar 

  17. Laskar, J.: 1994, ‘Large scale chaos in the solar system’, Aste Astrophys. 287, L9 — L12.

    ADS  Google Scholar 

  18. Laskar, J.: 1995, ‘Frequency map analysis of an Hamiltonian system’, Workshop on Non-Linear Dynamics in Particle Accelerators, ALP Conf. Proc. 344, 130–159.

    Article  Google Scholar 

  19. Laskar, J.: 1999, Introduction to Frequency Map Analysis’, in: C. Simò (ed.), Proceedings of the NATO ASI school: ‘Hamiltonian Systems with Three or More Degrees of Freedom’, S’Agaro

    Google Scholar 

  20. Spain), June 19–30, 1995, Kluwer, pp. 134–150.

    Google Scholar 

  21. Laskar, J. and Robutel, P.: 1995, ‘Stability of the planetary three-body problem — I. expansion of the planetary hamiltonian’, Celest. Mech. Dyn. Aste 62, 193–217.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Locatelli, U.: 1998, ‘Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian’, Planet. Space Sci. 46 (11 12), 1453–1464.

    Article  ADS  Google Scholar 

  23. Locatelli, U.: 2001, ‘Proof of a KAM theorem on the existence of invariant tori near an elliptic equilibrium point’, Quaderni del dipartimento di matematica, Università di Milano, 5 2001.

    Google Scholar 

  24. MacKay, R. S. and Stark, J.: 1992, ‘Locally most robust circles and boundary circles for area-preserving maps’, Nonlinearity 5, 867–888.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Moser, J.: 1962, ‘On invariant curves of area-preserving mappings of an annulus’, Nache Akad. Wiss. Gött,. II Math. Phys. Kl 1962, 1–20.

    Google Scholar 

  26. Moser, J.: 1967, ‘Convergent series expansions for quasi-periodic motions’, Math. Ann. 169, 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  27. Moser, J.: 1973, Stable and Random Motions in Dynamical Systems, Princeton University press, Princeton.

    MATH  Google Scholar 

  28. Murray, N. and Holman, M.: 1999, ‘The origin of chaos in outer solar system’, Science 283, Iss. 5409, 1877.

    Google Scholar 

  29. Nobili, A. M., Milani, A. and Carpino, M.: 1989, ‘Fundamental frequencies and small divisors in the orbits of the outer planets’, Astr. Astrophys. 210, 313–336.

    MathSciNet  ADS  Google Scholar 

  30. Poincaré, H.:1892, Les méthodes nouvelles de la Mécanique Céleste,Gauthier-Villars, Paris (reprinted by Blanchard (1987)).

    Google Scholar 

  31. Robutel, R: 1993, Contribution à l’étude de la stabilité du problème planetaire des trois corps, Ph.D. thesis, Observatoire de Paris.

    Google Scholar 

  32. Robutel, R: 1995, ‘Stability of the planetary three-body Problem — II. KAM theory and existence of quasiperiodic motions’, Celest. Mech. Dyn. Aste 62, 219–261.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Schenkel, A., Wehr, J. and Wittwer, P.: 2000, ‘Computer-assisted proofs for fixed point problems in Sobolev Spaces’, MPEJ 6 (3), 1–67.

    MathSciNet  Google Scholar 

  34. Sussman, G. J. and Wisdom, J.: 1992, ‘Chaotic evolution of the solar system’, Science 241, 56–62.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Locatelli, U., Giorgilli, A. (2001). Invariant Tori in the Secular Motions of the Three-Body Planetary Systems. In: Dvorak, R., Henrard, J. (eds) New Developments in the Dynamics of Planetary Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2414-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2414-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5702-0

  • Online ISBN: 978-94-017-2414-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics