Skip to main content

Additio ILLA Non Videtur Edenda: Giuseppe Biancani, Reader of Galileo in an Unedited Censored Text

  • Chapter

Part of the book series: Archimedes ((ARIM,volume 6))

Abstract

I love and admire Galileo, not only for his singular learning and inventions, but also for the lasting friendship I struck up with him in Padua, where I was overcome by his courtesy and affection, that bound me to him. No one, I believe, has spread and defended his findings, both in public and in private, more than I have.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. “Amo et ammiro il Galileo, non solo per la sua rara dottrina et invenzione, ma anco per l’antica amicizia che gia contrassi con lui in Padova, dalla cortesia et amorevolezza del quale restai legato: ne credo sia stato alcuno che habbia più publicato, confirmato et difeso le sue invenzioni di me, in publico et in private” Giuseppe Biancani’s Letter to Christoph Grienberger [14 Juni 1611], in Galileo Galilei, Le opere di Galileo Galilei: Edizione Nazionale, ed. A. Favaro, 20 vols. (Florence, 1890–1909, repr. 1968), (hereafter Opere), xi. 126.

    Google Scholar 

  2. For Biancani’s biography, see E. Grillo, “Biancani, Giuseppe,” in Dizionario Biografico degli italiani (Rome, 1967), x. 33–35

    Google Scholar 

  3. Ugo Baldini, “Galileo, la nuova astronomia e la critica de H’aristotelismo nel dialogo epistolare tra Giuseppe Biancani e i revisori romani della Compagnia di Gesù,” Annali dell’Istituto e Museo di Storia della Scienza di Firenze 9 (1984), 13–43

    Google Scholar 

  4. Ugo Baldini, “Dal geocentrismo alfonsino al modello di Brahe. La discussione Grienberger-Biancani,” in Ugo Baldini., “Legem impone subactis.” Studi su filosofia e scienza dei Gesùiti in Italia. 1540–1632 (Rome, 1992), 217–250, esp. 238–39

    Google Scholar 

  5. Ugo Baldini and Pier Daniele Napolitani, Christoph Clavius. Corrispondenza (Pisa, 1992) I. II. 18–19.

    Google Scholar 

  6. Following the publication of Sidereus Nuncius there circulated a treatise De lunarium montium altitudine problema mathematicum [see Opere, iii. 299–307], which attacked Galileo’s discoveries pertaining to the lunar mountains, insisting on the ancient opinion that the surface of the moon was perfectly smooth. Despite Favaro’s opinion, it seems unlikely that this libel is attributable to Biancani, “Intorno al Problema di Mantova sull’altezza dei monti lunari,” Atti e memorie della Reale Accademia di scienze, lettere edarti in Padova, 8 (1892), 41–43

    Google Scholar 

  7. Biancani, “Ancora del Problema di Mantova sull’altezza dei monti lunari,” Atti e memorie della Reale Accademia di scienze, lettere edarti in Padova, 9 (1893), 22–26. More recent studies ascribe authorship to individuals linked with the Parma College, namely Dario Tamburelli or the Belgian Jean Verviers.

    Google Scholar 

  8. See Ugo Baldini, “La scuola scientifica emiliana della Compagnia di Gesù, 1600–1660. Linee di una ricostruzione archivistica,” in Università e cultura a Ferrara e Bologna (Florence, 1989), 109–178, esp. 141 and 145; Id., “La scuola scientifica della provincia dal 1606 al 1660,” in “Legem impone subactis,” 401–465, esp. 445, 449; Id., “L’origine della scuola scientifica della provincia veneta ed i rapporti con Galileo,” in ibid., 347–400, esp. 391. Another scholar identifies the author of the Problem of Mantua as Mario Bettini.

    Google Scholar 

  9. See Denise Arico, “ ‘In doctrinis glorificate Dominum.’ Alcuni aspetti della ricezione di Clavio nella produzione scientifica di Mario Bettini,” in Ugo Baldini (ed.), Christoph Clavius e l’attività scientifica dei Gesùiti nell’età di Galileo (Rome, 1995), 189–208

    Google Scholar 

  10. Denise Aricò., Scienza, teatro e spiritualità barocca. II Gesùita Mario Bettini (Bologna, 1996), 211–217. Whoever the author, Biancani was not stranger to the Problem of Mantua for, as he himself admitted to Christoph Grienberger, he helped revise the text.

    Google Scholar 

  11. See Giuseppe Biancani’s letter to Giovanni A. Magini [17 May 1613], in Opere, xi. 509. See also Maria Luisa Righini Bonelli, “Le posizioni relative di Galileo e dello Scheiner nella scoperta delle macchie solari nelle pubblicazioni edite entro il 1612,” Physis, 12 (1970), 405–410.

    Google Scholar 

  12. The literature on the subject is considerable. See the diverging accounts by Anna De Pace, Le matematiche e il mondo. Ricerche su un dibattito in Italia nella seconda metd del Cinquecento (Milan, 1993)

    Google Scholar 

  13. Peter Dear, Discipline and Experience. The mathematical way in the scientific revolution (Chicago and London, 1995), where references to other relevant works may be found. Dear’s book does not specifically address the subject, but it broaches logical and epistemological issues that, with regard to mathematics, were discussed between the late sixteenth and early seventeenth centuries.

    Google Scholar 

  14. Giuseppe Biancani, Aristotelis loca mathematica (Bologna, 1615), hereafter Loca.

    Google Scholar 

  15. The only study specifically devoted to the Dissertatio is Giulio C. Giacobbe, “Epigoni nel Seicento della quaestio de certitudine masthematicarum: Giuseppe Biancani,” Physis, 18 (1976), 5–40.

    Google Scholar 

  16. “Postremo advertendum, quod magni momenti est, definitiones tarn geometricae quam arithmeticae esse omnino essentiales, quae scilicet totam rei quidditatem explicent; minime vero esse tantummodo nominis explicationes aut definitiones [In the end it is opportune and very important to observe that definitions, both geometric and arithmetic, are entirely essential — that is they explicate all the quiddity of the thing; it is not true, on the contrary, that they are only explications or definitions of the name].” Giuseppe Biancani, De natura mathematicarum dissertatio (Bologna, 1615), hereafter Dissertatio. See Aristotle, An. Post., I, 10, 76a.

    Google Scholar 

  17. For Clavius, each mathematical demonstration is, sic et simpliciter, capable of being converted into syllogism, even though nobody is really interested in such an operation, as it involves the sacrifice of one of the most significant advantages of mathematics over logic: concision. Mathematics had, from his point of view, an easier and safer process than the syllogistics. This allowed Clavius to distance himself and, in general, the “mathematical way” from the confusion that reigned in philosophical circles, and which clashed with the composed accord and solemn harmony found among the students of mathematics: “Cum igitur disciplinae mathematicae veritatem adeo expetant, adament, excolantque, ut non solum nihil, quod sit falsum, verum etiam nihil, quad tantum probabile existat, nihil denique admittant, quod certissimis demonstrationibus non confirment, corroborentque, dubium esse non potest, quin eis primus locus inter alias scientias omnes sit concedendum [Since mathematical disciplines desire, love, and venerate truth so much that not only do they not admit anything wrong, but nothing that is only probable, therefore nothing that they do not prove or confirm by means of certain demonstrations, there is no doubt that the first place among all the other sciences belongs to them].” Christoph Clavius, Euclidis Elementorum libri XV... (Rome, 1589), 15. On Clavius,

    Google Scholar 

  18. see Antonella Romano, La contre-réforme mathématique. Constitution et diffusion d’une culture mathématique Jésuite à la Renaissance (Rome, 1999), 85–178.

    Google Scholar 

  19. Dissertatio, 10.

    Google Scholar 

  20. “Sequitur absolute dicendum esse mathematicas reliquarum scientiarum praestantissimas esse, quemadmodum inter opiniones praestantissimum quid est Veritas.” Dissertatio, 27.

    Google Scholar 

  21. Aristotle gave a definition of these scientiae mediae in Phys., II, 2, 194 a 5–10. He considered them “the most physical among mathematical disciplines,” expressing a comparative evaluation that kept them in the mathematical domain. It was Averroes who indicated the intermediate character of mixed mathematics which, in his opinion, was located between pure mathematics and the more exquisite philosophical disciplines. Aristotle, De Physico Auditu libri octo, cum Averrois Cordubensis variis in eosdem commentariis (Venice, 1592), II, 55v.

    Google Scholar 

  22. See Luigi Olivieri, “Dalle ‘scientiae mediae’ alle ‘due nuove scienze’: linee di sviluppo deU’epistemologia galileiana,” in Milla Baldo Creolin (ed.), Galileo e la scienza sperimentale (Padua, 1995), 65–86.

    Google Scholar 

  23. “Cur cuneus tantas obtinet vires? Quia est vectis geminatus. Unde cochlea tanta vis? Quia constat cuneo et vecte. Verum quid admirabilius quam quodlibet pondus, vel ipsum universum, unius formicae vi posse commoveri? Ipsamque naturam, ut ait Aristoteles, vel invitam superare. Quam subtilia sunt ea quae de centro gravitàtis Archimedes olim, nuper vero Commandinus et Lucas Valerius demonstrarunt,” Dissertatio, 30–31 (italics added). Conforming to Aristotelian epistemology, Biancani, when discussing the earth’s motion, for example, stressed that his subject is not terraemotu, the motion of earth as an element, but motu terrae, the motion of earth itself: “Non de terraemotu, sed de motu terrae hie agendum est: ille enim nihil habet Astronomicum, ac proinde totus physicis reliquendo est [Here one talks about terraemotus (earthquake), not motus terrae (motion of the earth), for the former has nothing astronomical, and accordingly is to be left entirely to the physicists].” Giuseppe Biancani, Sphaera Mundi (Bologna, 1620), 74. See Giovanni Baffetti, “L’enciclopedia matematica dei Gesùiti,” in Walter Tega (ed.), Le origini della modernità, I, Linguaggi e saperi tra XV e XVI secolo(Florence, 1999), 81–102.

    Google Scholar 

  24. “Idem ego quoque in Aristotelis operibus efficere sum conatus, ut quae de Mathematicis rebus in universis eiusdem monumentis sparsa leguntur, eadem in unum a me collecta, et explicata iis Philosophiae studiosis maxime servirent, qui prisca ilia consuetudine relicta, Mathematicarum omnium ignari non sine gravi studiorum suorum detrimento Philosophiae circulum aggrediuntur,” Loca, 6.

    Google Scholar 

  25. “E già parmi di sentire intonar negli orecchi che altro è il trattar le cose fisicamente ed altro matematicamente, e che i geometri doveriano restar tra le loro girandole, e non affratellarsi con le materie filosofiche, le cui verità sono diverse dalle verità matematiche; quasi che la geometria a i nostri tempi pregiudichi all’aqquisto della vera filosofia, quasi che sia impossibile esser geometra e filosofo, si che per necessaria conseguenz[a] si inferisca che chi sa geometria non possa saper fisica, ne possa discorrere e trattar delle materie fisiche fisicamente,” Diversifragmenti attenenti al trattato delle cose che stanno su Vacqua, in Opere, iv. 59.

    Google Scholar 

  26. See Baldini, “L’origine della scuola scientifica della provincia veneta ed i rapporti con Galileo,” in Legem impone subactis, 347–400.

    Google Scholar 

  27. “Praecipua quaedam aut nova, aut restaurata quae obiter pertractantur.”

    Google Scholar 

  28. Vitruvius, De Architectura, IX, 3; Marshall Clagett, Archimedes in the Middle Ages (Philadelphia, 1978), iii. 1066–1068.

    Google Scholar 

  29. “De iis, quae insident, una cum nova demonstratione problematis illius Archimedis, quo metallorum mixtionem indissoluta corona, exploravit in additione,” Loca, 11.

    Google Scholar 

  30. “T. 44 et seq. cur quaedam graviora quam aqua supernatent,” Loca, 14.

    Google Scholar 

  31. Galileo Galilei, Discorso al Serenissimo Don Cosimo II, Gran Duca di Toscana, intorno alle cose che stanno in su Vacqua o che in quella si muovono (Firenze, 1612), hereafter Discorso, in Opere, iv. 57–141.

    Google Scholar 

  32. “Hoc loco desideratur commentarius in cap. ult. de Caelo, cuius loco interim Lector adeat Discursum Italicum Galilaei Galilaei, de his, quae in aqua moventur ac natant: ubi prope finem, plura in huius capitis explicationem offert,” Loca, 88.

    Google Scholar 

  33. See Pietro Redondi, “Atomi, indivisibili e dogma,” Quaderni storici, 20 (1985), 529–575; esp. 545

    Google Scholar 

  34. Wiiliam Wallace, Galileo and his Sources. The Heritage ofCollegio Romano, (Princeton, 1984), 141–148, at 128.

    Google Scholar 

  35. “Additio ilia ad Librum P. Biancani, De his quae moventur in aqua, non videtur edenda: cum sit impugnatio, non autem (ut titulum prae se fert) explicatio Aristotelis. Neque conclusio, aut rationes, quibus ilia probatur, sint Autoris, sed Galilaei: satisque fuerit eas apud Galilaeum legi. Transcribi enim in libros nostrorum inventa Galilei, praesertim quibus impugnant Aristotelem, nee videtur decens, nee expediens,” Archivium Romanum Societatis Iesu, from now on ARSI, F. G. 662, c. 66r; italics mine. The text of the censure is published in Baldini, “Legem impone subactis,” 232, translated in Blackwell, Galileo, Bellarmine, and the Bible Notre Dame, 1991), 150.

    Google Scholar 

  36. ARSI, F. G. 662, c. 168r.

    Google Scholar 

  37. “Hac de re post Aristotelem subtiliter tractarunt divus Archimedis, aetate vero nostra Marinus Ghetaldius, et Galileus Galileus, ex quibus ea quae ad rem nostram faciunt in unum breviter colligam,” ARSI, F. G. 662, c. 168r.

    Google Scholar 

  38. It is unclear, however, whether the expression “ex quibus” refers only to Ghetaldi and Galileo or to Aristotle and Archimedes as well. Incidentally, conspicuous by his absence is Simon Stevin, whose works in Latin translation enjoyed wide circulation in Italy. Simon Stevin, Hypomnemata mathematica (Leyden, 1608). See Paul P. Bockstaele, “The Correspondence of Adriaan van Roomen,” Lias, 3 (1976), 85–129, 249–299.

    Google Scholar 

  39. See Pierre Duhem, Les Origines de la Statique, 2 vols. (Paris, 1905–6); Id., Etudes sur Leonard de Vinci 3 vols. (Paris, 1906–13)

    Google Scholar 

  40. Israel E. Drabkin and Stillman Drake, Mechanics in Sixteenth-Century Italy (Madison, 1969), 3–60. On the Quaestiones mechanicae — a work that circulated primarily among mathematicians, not philosophers

    Google Scholar 

  41. see Giovanni Vailati, “II principio dei lavori virtuali da Aristotele a Erone d’Alessandria,” Atti della R. Accademia delle Scienze di Torino, 33 (1897), repr. in Scritti di G. Vailati (Leipzig and Florence, 1911), 91–106

    Google Scholar 

  42. Paolo Galluzzi, Momento. Studi galileiani (Rome, 1979), 74–118

    Google Scholar 

  43. Gianni Micheli, Le origini del concetto di macchina (Florence, 1995), esp. 37–98.

    Google Scholar 

  44. “Unico padre di tutte le scienze, salvo della matematica e della medicina.” Pietro Sforza Pallavicino, Lettere (Rome, 1668), 111.

    Google Scholar 

  45. The General of the Order, Claudio Acquaviva, concerned with the reaction in the Catholic world, above all among Jesuits and Dominicans, to the controversy De auxiliis Divinae Gratiae and with the deviation from traditional Aristotelian philosophy by the Jesuits themselves, had issued on 14 December 1613 a decree De observanda Ratione studiorum deque doctrina Sancti Tomasi tenenda, on the advice of Bellarmino, Suarez, and Cobos. Jesuits were enjoined to return to Thomist orthodoxy, warned against novel doctrines, and admonished generally to maintain uniformity of doctrine. See Giorgio Spini, Galileo, Campanella e il “Divinus Poeta” (Bologna, 1996), 33

    Google Scholar 

  46. James Brodrick, S. J. Bellarmin. Saint and Scholar (Westminster, 1961), 332ff.

    Google Scholar 

  47. Baldini, Legem impone subactis, 42.

    Google Scholar 

  48. Francesco Buonamici, De motu libri X (Florence, 1591), v. 446. Galileo cited such acceptance in his Discorso.

    Google Scholar 

  49. John P. Anton, Aristotle’s Theory of Contrariety (London, 1957)

    Google Scholar 

  50. Friedrich Solmsen, Aristotle’s System of the Physical Word. A Companion to his Predecessors (Ithaca, 1960)

    Google Scholar 

  51. Denis O’Brien, Theories of Weight in the Ancient World. Four Essays on Democritus, Plato and Aristotle. A Study in the Development of Ideas, 4 vols. (Paris, 1981).

    Google Scholar 

  52. “Sed ante omnia duo oportet definire: duplicem enim possumus alicuis corporis gravitàtem considerare: unam ipsius corporis particularem et propriam ut cum dicimus hoc corpus ferreum vel plumbeum, v. g. haec sphaera plumbea pondet [sic] libras decern atque haec dicitur gravitàs propria; alteram vero non ipsius corporis particularis, sed potius generis et naturae ipsius, ut cum dicimus plumbeum est gravius ferreo ... Propositis duobus globis uno plumbeo, altero ferreo, magnitudine aequalibus, quia plumbeus gravior est ferreo, propterea dicimus non solum globum ilium particularem esse altero ferreo graviorem, sed etiam plumbum ipsum in genere esse gravius ferro in genere ... Atque haec secunda gravitàs, quae relativa est, gravitàs generis appellatur [But first of all it is necessary to define two things. In fact we can consider as double the gravity of a body: one particular and peculiar of the body itself, as when we say that this body of iron or lead — for example this lead ball — weighs ten libras, and this is called peculiar gravity (gravitàs propria). The other is not particular of the body itself, but rather of its genus and nature, as when we say that a lead body is heavier than an iron one. Taking into consideration two globes, one of lead and the other of iron, of the same size, since the lead one is heavier than the iron one, we say not only that that particular globe is heavier than that of lead, but also that lead in its genus is heavier than iron in its genus. And this second, relative gravity is called gravity in genus (gravitàs in genere)]” (italics added). ARSI, F. G. 662, cc. 168r-v.

    Google Scholar 

  53. See ARSI, F. G. 662, cc.l68v-169r. It corresponds to Discorso, in Opere, iv. 70.

    Google Scholar 

  54. See Antonio Favaro, Avvertimento, in Opere, iv. 5–16; Stillman Drake, “The Dispute over Bodies in Water,” in Galileo Studies (Ann Arbor, 1970), 159–176

    Google Scholar 

  55. Stillman Drake, Cause, Experiment and Science. A Galilean Dialogue Incorporating a New English Translation of Galileo’s “Bodies That Stay atop Water or Move in It” (Chicago and London, 1981)

    Google Scholar 

  56. Stillman Drake, Galileo at Work. His Scientific Biography (Chicago and London, 1978), 190–316 passim

    Google Scholar 

  57. William R. Shea, “Galileo’s Discourse on Floating Bodies: Archimedean and Aristotelian Elements,” in Actes du XII Congres International d’Histoire des Sciences (Paris, 1971), iv. 149–153

    Google Scholar 

  58. William R. Shea, Galileo’s Intellectual Revolution (London and Basingstoke, 1972), 30–70

    Google Scholar 

  59. Galluzzi, Momento. Studi galileiani, 227–246; Mario Biagioli, “The Anthropology of Incommensurability,” Studies in History and Philosophy of Science, 21 (1990), 183–209

    Article  Google Scholar 

  60. Mario Biagioli, Galileo, Courtier. The Practice of Science in the Culture of Absolutism (Chicago, 1993), 159–209, 227–232;

    Google Scholar 

  61. Francesco P. de Ceglia, Reazioni romane. L’idraulica galileiana negli scritti di Giovanni Bardi e Giuseppe Biancani (Bari, 1997)

    Google Scholar 

  62. Francesco P. de Ceglia, De natantibus. Una disputa ai confini tra filosofia e matematica nella Toscana medicea (1611–1615) (Bari, 1999).

    Google Scholar 

  63. See William R. Shea, “Galileo’s Discourse on Floating Bodies”; Id., Galileo’s Intellectual Revolution.

    Google Scholar 

  64. See Archimedes, On Floating Bodies, i. 7. Marino Ghetaldi held roughly the same position in Archimedes Promotus which, compared with the Discorso, reveals a conceptual framework more faithful to the theorizings of the Greek mathematician. See Marino Ghetaldi, Promotus Archimedis [sic] seu de variis corporum generibus gravitàte et magnitudine comparatis (Rome, 1603); Pier Daniele Napolitani, “La geometrizzazione della realtà fisica: il peso specifico in Ghetaldi e in Galileo,” Bollettino di storia delle scienze matematiche, 8 (1988), 139–237.

    Google Scholar 

  65. Even though the relationship with the Pseudo-Archimedean tradition is evident, it is not quite clear what Galileo’s specific sources were. Drake believes that a probable source was Nicolò Tartaglia’s Quesiti et inventioni diverse (Venice, 1546), 82: See Stillman Drake, “Introduction,” to Galileo Galilei, Discourse on Bodies in Water, transl. Thomas Salusbury, ed. Stillman Drake (Urbana, 1960), p. IX, n. 13; Id., Cause, Experiment and Science, 27–8. Galileo’s first mathematics teacher, Ostilio Ricci, had been Tartaglia’s disciple and could have served, therefore, as the intermediary. See Thomas B. Settle, “Ostilio Ricci, a Bridge between Alberti and Galileo,” Actes du XII Congres international d’histoire des sciences — Paris 1968 (Paris, 1971), III B, 121–6. In any case, the notion ofgravitàs specie — though not the specific expression — was common to many authors of mechanical treatises in the sixteenth century, and even to Leonardo. See // Codice Atlantico di Leonardo da Vinci (Milan, 1894–1904), f. 154v. Another possible source could have been Giovanbattista Benedetti. See Diversarum speculationum mathematicarum et physicarum liber (Turin, 1585), 141. On the subject, see Galluzzi, Momento. Studi galileiani, 197, n. 170. For De ponderibus see Marshall Clagett, Archimedes in the Middle Ages, vol. Ill, part IV, 1286–311; Maximilan Curtze, “Ein Beitrag zur Geschichte der Physik im 14. Jahrhundert,” Bibliotheca mathematica, N.S. 10 (1896), 43–49

    Google Scholar 

  66. John L. Heiberg, Mathematici Graeci minores (Copenhagen, 1927), 93–107;

    Google Scholar 

  67. Ernest A. Moody and Marshall Clagett, The Medieval Science of Weights (Madison, 1952), 33–53; 317–21.

    Google Scholar 

  68. “‘To, dunque, chiamo egualmente gravi in ispecie quelle materie, delle quali eguali moli pesano egualmente: come se, per esemplo, due palle, una di cera e l’altra d’alcun legno, eguali di mole, fussero ancora eguali in peso, diremmo quel tal legno e la cera essere in ispecie egualmente gravi.” Discorso, in Opere: IV, 67. For the English translations of the Discorse I follow (with occasional silent corrections) Drake, Cause, experiment and science, 27.

    Google Scholar 

  69. “Moment, oppress i meccanici, significa quella virtù, quella forza, quella efficacia, con la quale il motor muove e ’l mobile resiste; la qual virtù depende non solo dalla semplice gravità, ma dalla velocità del moto, dalle diverse inclinazioni degli spazii sopra i quali si fa il moto, perché più fa impeto un grave descendente in uno spazio molto declive che in un meno.” Discorso, in Opere, IV, 68. Drake, Cause, experiment and science, 21. Neither Biancani nor Bardi attached great importance to the concept of “moment.”

    Google Scholar 

  70. It is not clear whether Biancani, terse in his exposition, fully understood the significance of the expression “gravità in specie.” The Aristotelians who had written against Galileo completely misinterpreted it. “E, primo, per formar una spezie ricerca due cose, ugualita di mole e di gravità, che sono tra sé molto differenti, trovandosi l’una senza l’altra: come, dunque, forma un’essenza di due enti così separati? [And first of all, in order to create a species he [Galileo] says that one needs two things: equality of volume and of gravity; these are very different from each other and one can be found without the other. How can he create one essence by two separated beings?]” Giorgio Coresio, Operetta intorno al galleggiare de’ corpi solidi... (Florence, 1612), in Opere, iv. 197–244, esp. 220. “E io torno a dire che né anche quanto al peso si debbe usar questo termine specifico, atteso che il più o men grave o leggieri non muta la spezie della gravità o leggerezza, ma solamente la semplice gravità differente dalla semplice leggerezza per ragion del subbietto in cui risiede, perché sono i subbietti differenti di spezie fra di loro; ma se non si muta di spezie il subbietto, non si mutera mai di gravità. Oltre actio, pesate un vaso d’argento pieno d’aria, e poi riducetelo in una massa, che non sia voto ne incavato; e vedrete che pesera il medesimo, senza esser mutata la natura dell’argento: adunque l’aria non li aggiungneva leggerezza poi che non vi essendo, pesa il medesimo [And I repeat that with respect to the weight one is not to use this specific term, for being more or less heavy or light does not alter the species of gravity or lightness, but only the simple gravity -different from simple lightness because of the subject in which one or the other is — as the subjects are in species different; but if the subject does not change its species, it cannot change its gravity. Furthermore if one weights a silver vase full of air and then reshapes it so that it has neither inside cavities nor hollows, it will have the same weight, without the nature of silver having changed. So air did not add lightness, as when it is missing, silver has the same weight],”

    Google Scholar 

  71. Lodovico Delle Colombe, Discorso apologetico d’intorno al Discorso di Galileo Galilei, circa le cose che stanno su Vacqua o che in quella si muovono (Florence, 1612), in Opere, iv. 311–369, esp. 354. “Quanto alia prima descrizione, che due pesi di mole equali, che equalmente pesino, sieno equali di gravità in ispecie, cioe, mi credo io, che sieno d’una medesima spezie di gravità; il che se così e, non e al tutto vero: impercioche si pud ritrovare un solido di terra equale a un solido di qualche misto, che pesino equalmente; tutta volta non sono della medesima spezie di gravità, come di sotto diremo [With reference to the first description that two bodies with the same volume and the same weight have the same gravity in species, that is — I believe — the same species of gravity, I say that if it is so, it is not completely right. Indeed one can find a earthy solid with the same weight of a solid composed of a mixed; nevertheless they have not the same species of gravity, as will be said further on],” Vincenzio di Grazia, Considerazioni sopra 7 Discorso di Galileo Galilei, intorno alle cose che stanno su Vacqua o che in quella si muovono, in Opere, iv. 371–440, esp. 386 (italics added). “Che le cose che vanno al fondo, habiano tal moto dalla magior gravezza in specie rispetto al mezo nel quale si muoveno ... Io ho per verita irrefragabile; ma ritrovo che Aristotele ha scrito l’istesso ... nel qual conchiude che le cose o misti che han predominio di terra, vanno sempre a fondo nelle acque, e quelle che han predominio d’aria soprastanno nell’acque, come anche quelle che han predominio d’acqua si affondano nell’aria, o per dir meglio vanno in giù [I believe without doubt that things that sink take this movement from the gravity in species bigger than that of the medium through which they go, but I find that Aristotle wrote the same. He concludes that objects or mixed objects comprised predominantly of earth always sink in water, those of air float on water, and those of water sink in air or, to say it better, go downward],” Giulio Cesare Lagalla’s Letter to Galileo Galilei [8 July 1612], in Opere, xii. 357–59, esp. 358.

    Google Scholar 

  72. ARSI, F. G. 662, c. 168v.

    Google Scholar 

  73. See Discorso, in Opere, iv. 67. Apart from Galileo’s statements, the results he achieved are not identical to Archimedes’, since he was able to conjugate Archimedean statics with pseudo-Aristotelian dynamics. See Francesco P. de Ceglia, De natantibus, cit., 30–39.

    Google Scholar 

  74. “Ex quibus patet causam descensus, vel ascensus, vel quietis corporum in aqua esse ipsorum gravitàtem vel levitatem genericam prout fuerit maior, vel minor, vel aequalis gravitàti aquae generis,”ARSI, F. G. 662, c. 169r.

    Google Scholar 

  75. The sixteenth proposition of the seventh theorem states: “Corpora eiusdem generis, et gravitàtis graviora quam aqua, etsi dissimilia, aequalem in aqua gravitàtem habent [Bodies of the same kind (genus) and heavier than water, although dissimilar, have in water the same gravity],” Marino Ghetaldi, Promotus Archimedis, 28.

    Google Scholar 

  76. Quaestio de aggeribus. The dispute on ridges.” This may best describe the debate that, in the wider quaestio de natantibus, focused on such a “curiosissimo” problem. It seems that no one prior to Galileo had devoted his attention to the peculiar behavior of laminae and tablets, as even his adversaries acknowledged. The interpretation of the phenomenon had a certain strategic relevance in corroborating or denying the theory that shape has no influence in floating or sinking, yet it was not of crucial importance but one among many interpretations of the phenomenon — and Galileo’s was perhaps the least convincing. Nevertheless, the interest aroused by Galileo’s observations seemed, at least among non-mathematicians, to revolve on such a curiosity. It was a minor phenomenon, a sort of bauble of nature. It embodied the spirit of the Baroque, which attempted to marry docere and delectare. It assumed, therefore, for those who commented on the Discorso, a considerable importance. The expressions used by three cardinals are particularly significant. Ottavio Bandini, for example, talked of “materia non meno utile che curiosa” (letter to Galileo Galilei [23 June 1612], in Opere, xi. 337), while Giovanni Battista Deti extolled the “cose belle e curiose” contained in the book (letter to Galileo Galilei [23 June 1612], ibid., 338). For his part, Carlo Conti declared himself impressed by the “molto belle et curiose” questions raised by the book on hydraulics (letter to Galileo Galilei [7 July 1612], ibid., 351–52, esp. 351). Though these were not judgments by mathematicians — and hence, perhaps, of little “scientific” importance -nevertheless the opinion of the cardinals make it clear that in order to be read, a “scientific” dissertation had to conform to certain formal requirements. A sounder judgement, though not dissimilar to the former, was expressed by Marc Welser, who wrote: “ho cominciato a leggerlo, et per quanto ho visto sin hora, mi riesce fatica bella, curiosa et utile [I began reading it and, as far as I have seen, reading this book is a pleasant, curious, and useful labor].” (letter to Paolo Gualdo [13 July 1612], ibid., 360).

    Google Scholar 

  77. The diminutive “arginetto” in the Discorso acquires the significance of a proper techno-scientific term. The practice, as Battistini notices, is typical of Galilean prose, being used in conjunction with other expressions, such as “corpicello,” “globetto,” “igNicolò.” See Andrea Battistini, “Gli aculei ironici della lingua di Galileo,” Lettere Italiane, 30 (1978), 289–332, esp. 303–4, repr. in Galileo e i Gesùiti. Miti letterari e retorica della scienza (Milan 2000), 125–81, esp. 143–4. Significant in this context is Emile Benveniste’s conclusion: “Dénommer, c’est-à-dire créer un concept, est l’opération en même temps première et derniere d’une science [naming, that is creating a concept, is at the same time the first and the last operation of a science]. “Genèse du terme scientifique, L’Age de la Science, 1 (1969), 3–7, esp. 3.

    Google Scholar 

  78. Discorso, in Opere, iv. 111.

    Google Scholar 

  79. Ibid., 96–99. The phenomenon of “ditching” of flat bodies or of very small solids in liquids is attributed today to superficial tension, namely to the formation of a sort of elastic film on the surface of the liquid, due to the action of the forces of molecular cohesion. It is unlikely that Galileo verified the height of ridges. His geometrical demonstrations, which are quite persuasive, evince an effort to interpret the phenomenon through the Archimedean hydrostatic model, by denying the action of resistance opposed by water which, though empirically evident, was difficult to formulate theoretically.

    Google Scholar 

  80. Ibid., 128–139; the confutation corresponds to Aristotle, De caelo, IV, 313a.

    Google Scholar 

  81. According to Galileo, it is the forming of ridges that creates the new aero-metalic solid generating moments insufficient to overcome the resistance of water to being lifted up. Conversely, his Aristotelian opponents denied that ridges contributed to floating, consenting only to shared resistance of water. Thus, for them, ridges were the effect, not the cause, of the floating of bodies.

    Google Scholar 

  82. This assumption is repeated several times in the Discorso and in Galileo’s response to his critics. See, for example: “L’acqua non contrasta o repugna semplicemente all’esser divisa, ma si bene all’esser divisa velocemente, e con tanta maggior renitenza quanta la velocità è maggiore: e la cagion di tal resistenza non depende da crassizie o altro che assolutamente contrasti alia divisione, ma perché le parti divise dell’acqua, nel dar luogo a quel solido che in essa si muove, bisogna che esse ancora localmente si muovano, parte a destra e parte a sinistra e parte ancora all’ingiù [Water does not oppose or prevent being simply divided, but water does oppose being divided swiftly, and with so much the greater stubbornness as the speed is greater. The cause of such resistance depends not on corporeality or anything else that absolutely opposes division, but on the fact that the parts of water divided, in giving place to that solid that is moved in it, must also be moved locally, part to the right and part to the left, and part also downward].” Discorso, in Opere, iv. 104–5; Stillman Drake, Cause, Experiment and Science, cit., 115. The notion of “speed” of motion in the Discorso is uncertain and ambiguous, as it is not yet articulated in quantitative terms. Probably in a fluid a body moves swiftly when it exceeds its natural speed — that is proportional to the ratio of the gravity in species to that of the medium. Nevertheless, in the Mechaniche a certain resistance to be moved had been attributed also to air. When discussing a sphere placed on a perfectly polished surface, Galileo used the following expression: “ogni pochissima resistenza, la quale e quella sola deH’aria che la circonda, potente a tenerla ferma [The least resistance, as that of the surrounding air, is sufficient to hold it still].” Opere, ii. 189–90.

    Google Scholar 

  83. “1 deducit, ex tribus corporis dimensionibus, longitudine, latitudine et profunditate, solam profunditatem conducere ad aggerem constituendum [1 he deduces that among the three dimensions of the body, length, width and depth, only depth leads to the constitution of the ridge].” ARSI, F. G. 662, c. 172r.

    Google Scholar 

  84. Opere, iii. I. 291–298.

    Google Scholar 

  85. On Giovanni Bardi, see Francesco P. de Ceglia, Reazioni romane, 39–5.

    Google Scholar 

  86. (Rome, 1614), hereafter Experimenta.

    Google Scholar 

  87. The author seems to refer to witnesses who are able to ascertain that the presented phenomena occurred in the way in which he described them: “The new experience of the seventeenth century, therefore, established its legitimacy in historical reports of events, often citing witnesses. The singular experience could not be evident, but it could provide evidence.” Peter Dear, “Jesuit Mathematical Science and the Reconstruction of Experience in the Early Seventeenth Century,” Studies in History and Philosophy of Science, 18 (1987), 133–175.

    Article  Google Scholar 

  88. Experimenta, 11.

    Google Scholar 

  89. There exists a large literature on Galilean corpuscularism, attesting to the complexity of the issue — owing to the fact that Galileo expressed himself differently in different works and in different periods of his life. When talking about the relationship between corpuscularism and continuism, Baldini notices that, from an epistemological point of view, the two procedures are equivalent: they present themselves as self-justifing hypotheses, as they postulate the existence of entities whose characters are defined so that, according to the rules of the theory that introduced them, they give rise to those facts for whose explanation they were introduced: Ugo Baldini, “II corpuscolarismo italiano del Seicento. Problemi di metodo e prospettive di ricerca,” in AA. VV., Ricerche sull’atomismo del Seicento (Florence, 1977), esp. 73

    Google Scholar 

  90. Ugo Baldini, “La struttura della materia nel pensiero di Galileo,” De homine, 57 (1976), 91–164

    Google Scholar 

  91. William R. Shea, “Galileo’s Atomistic Hypotesis,” Ambix, 17 (1970), 13–27

    Article  Google Scholar 

  92. Homer E. Le Grand, “Galileo’s Matter Theory,” in Robert E. Butts and Joseph C. Pitt (eds), New Perspectives on Galileo (Dordrecht, 1978), 197–208

    Chapter  Google Scholar 

  93. Pietro Redondi, “Atomi, indivisibili e dogma,” Quaderni storici, 20 (1985), 529–75. On the perception of contemporaneous society towards Galileo’s atomism,

    Google Scholar 

  94. see Federica Favino, “A proposito dell’atomismo di Galileo: da una lettera di Tommaso Campanella ad uno scritto di Giovanni Ciampoli,” Bruniana & Campanelliana, 3 (1997), 265–82.

    Google Scholar 

  95. Experimenta, 8. “II Barocco non è un delectare, è un docere-delectare [Baroque is not delectare, but docere-delectare]” Guido Morpurgo-Tagliabue, “Aristotelismo e Barocco,” in Enrico Castelli (ed.), Retorica e Barocco (Rome, 1955), 119–95, reprinted in Anatomia del Barocco (Palermo, 1987), 9–103, at 76. Luce Giard notices “Elle [Company of Jesus] sut magistralment organiser sa propre publicité, avec les repésentations théâtrales, les séances solennelles d’éloquence, les observations astronomiques, dans une mise en scène savante et bientôt baroque de la production et de la circulation des connaissances [The Company of Jesus was able to organize its publicity through theatrical performances, solemn seances of eloquence, and astronomical observations, in a masterly and baroque-like mise-en-scene of the production and circulation of knowledge],” “Le devoir d’intelligence, ou l’insertion des jésuites dans le monde du savoir,” in Luce Giard (ed.), Les jésuites à la Renaissance. Systeme educatif et production du savoir (Paris, 1995), p. lxii. Arguably, the stylistic difference between the Experimenta and the Discorso depended on the different literary genres that the works wished to appropriate. The Experimenta is, after all, a dramatic text while the Discorso is a treatise conveying rigour of science that could only be read.

    Google Scholar 

  96. “Dovendosi fare uno di questi problemi et essendo stato destinato a me, mi domandò il Padre Ghambergier di che cosa volevo farlo, proponendomi alcune altre cose; hora io gli dissi che haria desiderato di fare di qualche materia simile a questa, e così lui prese questa [As one of those problems was to take place, and I was chosen to expound it, Father Grienberger asked the subject on which I would speak, proposing to me other ones. I told him that I preferred to talk about something similar to that, so he considered it].” Giovanni Bardi’s letter to Galileo Galilei [20 June 1614], in Opere, xii. 76–77, esp. 76.

    Google Scholar 

  97. “Oltre l’esperienze che fece poi il Padre Christoforo Gremberger alia presenza di tutti, havendo portato in sala (dove fu recitato il detto problema) tutti quelli istrumenti che vedra nell’inchiusa figura [As well as the experiences that Father Cristoph Grienberger made in the presence of everybody, having brought into the room (where the problem was exposed) all those instruments that you will see in the enclosed plate].” Francesco Stelluti’s letter to Galileo Galilei [28 June 1614], in Opere, xii. 78.

    Google Scholar 

  98. See Paolo Gualdo’s letter to Galileo Galilei [20 November 1614], in Opere, xii. 112.

    Google Scholar 

  99. See Michael J. Gorman, “Mathematics and Modesty in the Society of Jesus. The problems of Christoph Grienberger” in the present volume.

    Google Scholar 

  100. “Et è bisognato che io mi sii mostro risoluto di volerlo stampare, perché altrimenti era facil cosa che non se ne facessi altro, perché ci era chi inclinava più al no che al si [And it was necessary that I showed myself determined to publish it, otherwise it would probably have remained unpublished, as there were some people who preferred it were not published.” Giovanni Bardi’s letter to Galileo Galilei [2 July 1614], in Opere, xii. 80.

    Google Scholar 

  101. Baldini, “Galileo nelle lettere dell’Elettore di Colonia e di Ricardo de Burgo a Christoph Grienberger”; Id.. “Astronomia e meccanica. La corrispondenza Grienberger-Burgo sull’idrosta-tica galileiana.”

    Google Scholar 

  102. “Per essere un quasi compendio del suo trattato, il quale per essere vulgare, non pud esser letto da gente straniera [to be but an abridged version of his treatise for, being in Italian, it cannot be read by foreigners].” Giovanni Bardi’s letter to Galileo Galilei [2 July 1614], in Opere, xii. 79.

    Google Scholar 

  103. Archimedean influences were already consolidated in the Italian mechanics of the sixteenth century. See Drake and Drabkin, Mechanics in Sixteenth-Century Italy; Paul L. Rose, The Italian Renaissance of Mathematics. Studies on humanists and mathematicians from Petrarch to Galileo (Geneva, 1975).

    Google Scholar 

  104. Antonio Possevino, Bibliotheca selecta qua agitur de ratione studiorum in Historia, in Disciplinis, in salute omnium prouranda(Rome, 1593), esp. 200.

    Google Scholar 

  105. See Luigi Balsamo, “La ‘Bibliotheca selecta’ di Antonio Possevino S. I. ovvero l’enciclopedia cattolica della Controriforma,” in W. Tega (ed.), Le origini della modernità, II, Linguaggi e saperi nel XVII secolo(Florence, 1999), 3–18.

    Google Scholar 

  106. Antonio Banfi, Vita di Galileo Galilei (Milan, 1930, repr. 1962), 80.

    Google Scholar 

  107. Maelcote tends to confine himself to simple observational reports, eliminating references to the consequences that could derive from them — in contrast to the consolidated assertions of Aristotelian cosmology. See Giovanni Baffetti, Retorica e Scienza. Cultura Gesùitica e Seicento italiano (Bologna, 1997), 168. In spite of Maelcote’s effort to exculpate the Sidereus Nuncius from elements critical of traditional knowledge, his oration, as Gregory of Saint Vincent recalled many years later, was received “non absque murmure philosophorum.” Christian Huygens, Oeuvres complètes (La Haye, 1889–1890), ii. 489–490.

    Google Scholar 

  108. “Haec ... Galileus demonstrat: ex quibus Aristotelis textum explicat,” ARSI, F. G. 662, c. 172v.

    Google Scholar 

  109. Discussing the Aristotelian notion that air is more divisible than water, and the latter is more divisible than earth [De caelo, IV, 6, 313b], he says: “cur aer et aqua nullam habent resistentiam semplici divisioni, falsum erit [As air and water have no resistance to simple division, it will be false].” ARSI, F. G. 662, c. 173v. According to Bardi, “E mi ha detto il Padre Ghambergier, che se non havessi hauto haver rispetto ad Aristotile, al quale loro, per ordine del Generate, non possono opporsi niente, ma lo devono sempre salvare, haria parlato più chiaro di quello che ha fatto [And Father Grienberger told me that if he had not been compelled to show respect towards Aristotle — against whom, by order of the General, they cannot oppose themselves, but must defend him — he would have spoken more clearly],” Giovanni Bardi’s letter to Galileo Galilei [20 June 1614], in Opere, xi. 76.

    Google Scholar 

  110. Gerolamo da Somaja’s report to Cosimo II on the course at Pisa was far from complimentary: “L’esperienza di più anni continui ha dimostrato, che lo Studio di Pisa gia tanto celebre, e nominato in tutto il mondo, per li famosissimi Dottori, che vi hanno letto, e per molta frequenza delli scolari, che vi concorrevano, va tuttavia un anno più dell’altro deteriorando [The experience of many years has demonstrated that the University of Pisa, which was renowned the world over for the famous Doctors who taught there and for its large number of students, shows every year increasing deterioration],” Archivio di Stato di Pisa, Università, Negozi 17, c. 140r. At that time, the local tradition in mathematics was not highly developed, manifesting itself above all in mysticism and astrology. See. Charles, B. Schmitt, “The Faculty of Arts at Pisa at the Time of Galileo,” Physis, 14 (1972), 243–72

    Google Scholar 

  111. Charles, B. Schmitt, “The University of Pisa in the Renaissance,” History of Education, 3 (1974), 2–17

    Google Scholar 

  112. Charles, B. Schmitt, Science in the Italian Universities in the Sixteenth and Early Seventeenth Centuries, in Maurice P. Crosland (ed.), The Emergence of Science in Western Europe (London, 1975), 35–56, repr. in

    Google Scholar 

  113. Charles, B. Schmitt, The Aristotelian Tradition and Renaissance Universities (London, 1984), 315–36

    Google Scholar 

  114. Charles, B. Schmitt, Philosophy and Science in Sixteenth-Century Italian Universities, in The Renaissance. Essays in Interpretation (London-New York, 1982), 297–336, repr. in Id. The Aristotelian Tradition, 337–76; Id., “L’Aristotelismo nel Veneto e le origini della scienza moderna: alcune considerazioni sul problema della continuita,” in Luigi Olivieri (ed.), Aristotelismo Veneto e Scienza Moderna, 2 vols. (Padua, 1983), i. 79–103.

    Google Scholar 

  115. According to the Pisan, the shape of bodies did not cause rest or motion, but influenced the speed of either upward or downward motion. To corroborate such an assumption, Galileo cited De caelo: “Le figure non son cause del muoversi semplicemente in giù o in su, ma del muoversi più tardo o più veloce [Shape has nothing to do with simply being moved or not being moved upward or downward; one can translate as well: Shape has nothing to do with being moved simply upward or downward],” Discorso, in Opere: iv. 124; Stillman Drake, Cause, Experiment and Science, 163, corresponding to Aristotle, De caelo, IV, 6, 313a 15. But did “semplicemente” refer to “muoversi” or “in giù o in su”? In other words, did the Stagirite mean that the width of a body, for example, is not the cause of moving absolutely but only cause secundum quid! Galileo was certain, or pretended to be, that the first interpretation was the correct one. However, such exegesis was somewhat audacious and the first reactions were not long in coming. Vincenzio di Grazia, for one, declared he was offended by the arrogance of the author of the Discorso, who did not bother to inquire into what the most important interpreters had said on the subject: Vincenzio di Grazia, Considerazioni sopra 7 Discorso di Galileo Galilei, 420–424. For his part, Biancani embraced Galileo’s daring interpretation. Commenting on text 42 of De caelo [IV, 6 313a 14–16], he says: “Figurae non sunt causa motus, nee quietis simpliciter solidorum in aqua, sed solum ut ea velocius aut tardius moveauntur ut superius demonstratum est [Shapes are not simply the cause of motion or rest of solids in water, but only of their moving more quickly or slowly, as is demonstrated above].” ARSI, F. G. 663, c. 173r.

    Google Scholar 

  116. “Qui plura desiderat Galilei subtilissimam tractationem adeat,” ARSI, F. G. 662, c. 172v.

    Google Scholar 

  117. In the ninth book of De architectura, Vitruvius recounted that Archimedes discovered the fraud committed on Jero by immersing in a vase full of water first the crown, then a golden mass, and finally a silver one — both having the same weight as the crown. He determined the quantity of gold and silver on the basis of the mass of the spilling water. See Vasilii P. Zoubov, “Vitruve et ses commentateurs du XVIe siecle,” in La Science au seizieme siecle (Paris, 1960), 67–90

    Google Scholar 

  118. Giorgio Tabarroni, “Vitruvio nella storia della scienza e della tecnica,” Atti della Accademia dell’Istituto di Bologna, classe di scienze morali, Memorie, 66 (1971–72), 1–37. Marino Ghetaldi had given a different demonstration. See Archimedes Promotus, 51–58.

    Google Scholar 

  119. Ugo Baldini, “Una fonte poco utilizzata per la storia intellettuale: le ‘censurae librorum’ e ‘opinionum’ nell’antica Compagnia di Gesù,” Annali dell’Istituto storico italo-germanico in Trento, 11 (1985), 19–67; Id. ‘“Uniformitas et soliditas doctrinae\ Le censurae librorum et opinionum, in “Legem impone subactis,” 75–119.

    Google Scholar 

  120. Even though Biancani has been long considered Galileo’s enemy, he exhibited a marked appreciation of the Pisan’s work, and inserted the following encomium to the chronology of famous mathematicians that he appended to the Loca: “Galilaeus Galilaeus. Florentinus, cui plurimum debet tota posteritas, nam ope Telescopii nuper a Belgis inventi, reperit quattuor planetas circa Iovem errantes; et innumeras alias fixas; in Luna montes, ac valles; nebulosas esse stellarum greges; Gallaxiam esse exiguorum asteriscorum agmen; Venerem instar Lunae augeri, et minui; Saturnum duobus stipari satellitibus; haec partim in suo Sidereo Nuncio exponit; partim in libro Italice scripto de Maculis solaribus, ubi se primum eorum repertorem esse contendit. Item Italice de iis, quae natant, aut moventur in aqua, opus activissimum; ubi aliquot Arist. loca mathematica expendit. Adhuc vivit et novum mundi systema adornat [Galileo Galilei, a Florentine, to whom all posterity should be grateful, since he, thanks to the telescope, not long ago invented by a Belgian, discovered four planets orbiting Jupiter; and innumerable fixed stars; mountains and valleys on the Moon; that nebulae are flocks of stars; that the galaxy is a long line of small celestial bodies; that Venus waxes and wanes, like the Moon; that Saturn is laterally pressed by two satellites. He has exposed these things in part in his Starry Messenger, in part in the Italian book on the sunspots — in which he pretends to be the first discoverer — then the Italian Discourse on bodies that stay atop water or move in it, a very useful work, in which he examines certain of Aristotle’s mathematical passages. He is still living and works on his new system of the world].” Giuseppe Biancani, Clarorum mathematicorum chronologia (Bologna, 1615), 64.

    Google Scholar 

  121. In the censure concerning the whole Loca, Camerota says: “Omnino autem caveat, ne (quod alicubi videtur facere) ullo in loco adscribatur in margine error Aristotelis aut quid simile [He must firmly avoid writing anywhere in the margin of the pages (as, on the contrary, he seems to do somewhere) Aristotle’s mistake or something similar].” Then Camerota reprimands Biancani who called Aristotle “one-eyed”: “Significat — inquit — Aristoteles non posse movere oculum alterum quoquoversus, mamente altero. Quod nisi verificetur in eo, qui unum tantum habet oculum, quique luscus dicitur, non video quomodo verum sit etc. Hoc vero non est explanare, aut defendere Aristotelem, sed irridere [It means — he says — that Aristotle cannot move one eye here and there, keeping the other motionless. I do not understand how this can be possible, unless the person taken into consideration has only an eye, in which case he is called one-eyed etc. This neither explicates nor defends Aristotle but derides him].” ARSI, F. G. 662, respectively cc. 162r and 162v. See Baldini, “Legem impone subactis,” 229–30.

    Google Scholar 

  122. Biancani had already discussed the Discorso in the Loca. There, too, he supported Galileo against Aristotle: “Illud postea, quod pro solutione Problematis assert, dum ait, navim magis in portu, quam in alto demergi (quoniam plus aquae, valeat magis, quam minus, navigii onus sustinere, parva enim aqua oppressa onere caedit facilius, quam multa) non parvam habet difficultatem. Refragantur enim maximorum Mathematicorum demonstrationes. Archimedes enim demonst. 5. Lib. I. De iis quae vehuntur in aqua acutissime demonstrat; solidarum magnitudinum humido laeviorum, in humidum eo usque demergi, ut tanta moles humidi, quanta est partis demersae, eandem quam tota magniutudo, gravitàtem habeat. Quod idem Galilaeus Galilaeus, in Italico Discurso de rebus, quae aquae innatunt, subtiliter comprobavit, ut videre [sic] est apud ipsum pag. 14. Quae cum certa sint, sequitur necessario falsum esse, maiorem aquae copiam altius navim quam minorem, extollere. Dummodo tamen aqua utrobique sit eiusdem gravitàtis. Quare Galilaeus pag. 17 sic orationem claudit: valeant inquit, corum false opiniones, qui existimant navigium facilius a magna aquae copia sustineri, quam a parva: quod Arist. Sect. 23. Probl. 2. credidit: cum contra verum sit, navim aeque facile in oceano, atque in decern doliorum aqua innatare, ac sustineri haec ille [What he asserts afterwards to solve the problem, when he says that ships sink easier in port than in open sea — since more water has more strength than less water to sustain the weight of the ship: in fact, less water, pressed by the weight, sags easier than more water — presents some difficulties. Against his opinion there are the demonstrations of the most important mathematicians. In fact, Archimedes acutely demonstrates in the fifth demonstration of the first book On Floating Bodies that solid bodies lighter than water sink in it until a mole of water, as big as the immersed part, weighs as much as the whole body. This has been subtly probed by Galileo Galilei, too, in the Italian Discourse on bodies that stay atop water, as it is possible to read on page 14. Since these things are indubitable, it follows that it is wrong that more water raises more of a ship than less water, provided that water has in both cases the same gravity. Therefore Galileo concludes on page 17 of his discourse: Accordingly this refutes the false opinion of those who think that a ship is sustained better and more easily in a vast bulk of water than in a lesser amount (as was believed by Aristotle in his Problemata 23: 2). On the contrary, it is truly possible that a boat should float as well in ten barrels of water as in the ocean itself],”“ Loca, 214.

    Google Scholar 

  123. Bardi, not being a Jesuit, was not subject to censorship and, therefore, had he so wished, he could have printed his Experimenta. However, it is quite probable that an attempt to publish would have brought about strong pressure to desist.

    Google Scholar 

  124. See ARSI, F. G. 662, cc. 162r-163v; Baldini, “Dal geocentrismo alfonsino al modello di Brahe,” 229–231; ARSI, F. G. 662, c. 167r.

    Google Scholar 

  125. Ultimately it was published only posthumously, as an appendix to the 1653 edition of the Sphaera mundi.

    Google Scholar 

  126. The censorships of the Constructio are preserved in ARSI, F. G. 661, cc. 163r-165r. At c. 162r. There exists a “Responsio P. Blancani ad Censuram sui opusculi de Horologio etc. et additionis de caelo” [“Father Biancani’s response to the censorship of his treatise on sundials etc. and of the addition on De caelo.”] Biancani takes cognizance of Camerota’s injunction and says: “so I shall add nothing [ideo nihl addam].”

    Google Scholar 

  127. This is the inescapable explanation of the above-mentioned entry in the index that promises a critical analysis of the final pages of De caelo. The index was already printed; otherwise Biancani could have eliminated from it the entry. It is unlikely that he added the cross-reference, even though it was not necessary. Such a gesture could be considered a provocation.

    Google Scholar 

  128. In 1612 there were published Tres epistolae de maculis solaribus by “Apelle” — a pseudonym for Christoph Scheiner — followed shortly thereafter by De maculis solaribus et stellis circa Iovem errantibus accuratior disquisitio. Coming up against Galileo, Scheiner claimed for himself priority in the discovery of sunspots and, accepting the fluid nature of the heavens, he maintained that sunspots were celestial bodies placed between the Earth and the Sun. Two decades later Scheiner resumed his attack on Galileo in the Rosa Ursina, where he asserted afresh his convinction concerning the nature of the heavens, by quoting numerous theological and scientific authorities. Scheiner also wrote a book against Galileo’s Dialogo but was not allowed to publish it. Antonio Favaro, “Oppositori di Galileo: III. C Scheiner,” Atti del R. Istituto Veneto di Scienze, lettere ed arti, 78 (1918–1919), 1–107

    Google Scholar 

  129. Corrado Dollo, Tanquam nodi in tabula — tanquam pisces in aqua. Le innovazioni della cosmologia nella “Rosa Ursina” di Christoph Scheiner,” in Baldini (ed.), Christoph Clavius e l’attività scientifica dei Gesùiti nell’età di Galileo, 133–158.

    Google Scholar 

  130. While in Italy, Jean Tarde discussed the issue of sunspots with Galileo. When he returned to France, he claimed in Borbonia sydera [1620] — and then in Les as tres de Borbon [1623] — that sunspots are small planets orbiting the sun.

    Google Scholar 

  131. Opere, v. 279–288. As is well-known, the letters to Mons. Piero Dini (16 February and 23 March 1615), and to Madam Cristina of Lorraine — undated, but written in 1615 — represent Galileo’s effort to convince theologians to abandon the literal interpretation of Scriptures.

    Google Scholar 

  132. See, for example, Giorgio de Santillana, The Crime of Galileo (Chicago, 1955)

    Google Scholar 

  133. Guido Morpurgo-Tagliabue, Iprocessi di Galileo e Vepistemologia(Milan, 1963)

    Google Scholar 

  134. Robert S. Westman, “The Copernicans and the Church,” in David C. Lindberg and Ronald L. Numbers (eds.), God and Nature: Historical Essays on the Encounter between Christianity and Science (Berkeley, 1986), 76–113

    Google Scholar 

  135. Massimo Bucciantini, “Contro Galileo. Alle origini dell’affaire” (Florence, 1995).

    Google Scholar 

  136. See Joseph de Jouvancy, Historia Societatis Iesu, (Rome, 1710), v. 916–917. It is relevant to note that the censorship was addressed to Alber, who was an expert in Aristotelian natural philosophy. The German Jesuit had written, among other things, Aristotelis organi duae priores partes conclusionibus comprehensae (Munich, 1574), and he supervised Oswald Stadler’s Naturalis philosophiae quattuor priores partes conclusionibus explicatae (Munich, 1575).

    Google Scholar 

  137. See Carlos Sommervogel, Bibliotheque de la Compagnie de Jesus, 12 vols. (Brussels, 1890–1932, repr. Louvain, 1960), i. 118. Furthermore, in 1592 he had officially expressed his belief that the multiplicity of commentaries on Aristotle created confusion and made it impossible to understand his works: “Nisi enim omnes una eademque versione utantur, multum impedimenti intelligendo Aristoteli adferentur [unless all people use the same and unique version, there will be many difficulties in understanding Aristotle].” ARSI, Germ. Sup. 2, cc. 77r-78v; see Monumenta Paedagogica Societatis Iesu, ed. Ladislaus Luckacs (Rome, 1992), vii. 84–85.

    Google Scholar 

  138. “Nella Scrittura si trovano molte proposizioni le quali, quanto al nudo senso delle parole, hanno aspetto diverso dal vero, ma poste in cotal guisa per accomodarsi all’incapacita del vulgo ... stante, dunque, che la Scrittura Sacra in molti luoghi e non solamente capace, ma necessariamente bisognosa d’esposizioni diverse dall’apparente significato delle parole, mi par che nelle dispute naturali ella doverebbe essere riserbata nell’ultimo luogo?” Galileo Galilei’s Letter to Benedetto Castelli [21 december 1613], in Opere, v. 281–288; 282. Translated in Stillman Drake, Galileo at Work (Chicago, 1981), 225.

    Google Scholar 

  139. “Praeterea ad coercenda petulantia ingenia decernunt ut nemo, suae prudentiae innixus, in rebus fidei et morum ad eadificationem doctrinae christianae pertinentium, Sacram Scripturam ad suos sensus contorquens, contra eum sensum, quern tenuit et tenet Sancta mater Ecclesia, cuius est iudicare de vero sensu et interpretatione Scripturarum Sanctarum, aut etiam contra unanimem consensum Patrum.” See Jean-Dominique Mansi, Sacrorum conciliorum nova et amplissima collectio (repr. Graz:, 1961), xxxiii. 22–33.

    Google Scholar 

  140. See, for example, Matteo Caccini’s letter to Tommaso Caccini [2 January 1615], in Opere, xviii. 417–418.

    Google Scholar 

  141. ‘To pertanto, vedendo non solo che questa scrittura corre per le mani d’ogn’uomo, senza che veruno la rattenga de’ superiori, e che vogliono esporre le Sante Scritture a lor modo e contra la comune esposizione de’Santi Padri, e difendere opinione appar[ente] in tutto contraria alle Sacre Lettere, sentendo che si favella poco onorevolmente de’Santi Padri antichi e di S. Tommaso, e che si calpesta tutta la filosofia d’Aristotile (della quale tanto si serve la teologia scolastica), et in somma che per fare il bell’ingegno si dicono mille impertinenze.” Nicolò Lorini’s letter to Paolo C. Sfrondati [7 February 1615], in Opere, xix. 297–298 (italics added). Translated in Maurice A. Finocchiaro, The Galileo Affair: A Documentary History (Berkeley and Los Angeles, 1989), 135.

    Google Scholar 

  142. Md.

    Google Scholar 

  143. “E perché alcuni di questi Padri, ed in particolare quest’istesso che ha parlato [Caccini], se ne son venuti costa per far, come intendo, qualche altro tentativo con la sua copia di detta mia lettera [And because some of this Fathers, and in particular the one who spoke, came over there, I believe, to try with your copy of my letter].” Galileo Galilei’s letter to Piero Dini [16 February 1615], in Opere, v. 292.

    Google Scholar 

  144. One can deduce this from the reply of the new General Muzio Vitelleschi. See ARSI, Epistulae Generalium ad Provinciam Venetam 6, c. 356v.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Ceglia, F.P. (2003). Additio ILLA Non Videtur Edenda: Giuseppe Biancani, Reader of Galileo in an Unedited Censored Text. In: Feingold, M. (eds) The New Science and Jesuit Science: Seventeenth Century Perspectives. Archimedes, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0361-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0361-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6115-7

  • Online ISBN: 978-94-017-0361-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics