Skip to main content

Regulation of ion transport in guard cells

  • Chapter

Abstract

Stomatal aperture size is controlled by volume changes in the subtending guard-cell pair (Fig. 1). Basically, stomatal aperture size increases as guard cells swell because of asymmetric distension of their cell walls. Guard-cell swelling occurs in response to K+ uptake (Imamura, 1943), balanced by Cl- uptake and anion (malate2-) synthesis from starch. These salts accumulate in vacuoles. Accumulation lowers guard-cell solute potential; as a result, water flows into the cell. Water influx increases the pressure potential, which causes cell swelling. Stomata close by dissipating these salts, including malate2- (Van Kirk & Raschke, 1978).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, J., Lassalles, J.P. & Kado, R.T. (1990). Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate. Nature, 343, 567–570.

    Article  CAS  Google Scholar 

  • Assmann, S.M. & Schwartz, A. (1992). Synergistic effect of light and fusicoccin on stomatal opening. Plant Physiol., 98, 1349–1355.

    Article  CAS  Google Scholar 

  • Assmann, S.M., Simoncini, L. & Schroeder, J.I. (1985). Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature, 318, 285–287.

    Article  CAS  Google Scholar 

  • Astle, M.C. & Rubery, P.H. (1980). A study of abscisic acid uptake by apical and proximal root segments of Phaseolus coccineus L. Planta, 150, 312–320.

    Article  CAS  Google Scholar 

  • Astle, M.C. & Rubery, P.H. (1985). Uptake of abscisic acid by suspension-cultured Phaseolus coccineus L. cells: evidence for carrier participation. J. Exp. Bot., 36, 469–484.

    Article  CAS  Google Scholar 

  • Astle, M.C. & Rubery, P.H. (1987). Carrier-mediated ABA uptake by suspension-cultured Phaseolus coccineus L. cells: stereospecificity and inhibition by ionones and ABA-esters. J. Exp. Bot., 38, 150–163.

    Article  CAS  Google Scholar 

  • Bianco-Colomas, J., Barthe, P., Orlandini, M. & Page-Dequiry, M.T.L. (1991).Carrier-mediated uptake of abscisic acid by suspension-cultured Amaranthus tricolor cells. Plant Physiol., 95, 990–996.

    Article  CAS  Google Scholar 

  • Blatt, M.R. (1987). Electrical characteristics of stomatal guard cells: Contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. J. Memb.Biol., 98, 257–274.

    Article  CAS  Google Scholar 

  • Blatt, M.R. (1988). Mechanisms of fusicoccin action: a dominant role for secondary transport in a higher-plant cell. Planta, 174, 187–200.

    Article  CAS  Google Scholar 

  • Blatt, M.R. (1990). Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta, 180, 445–455.

    Article  CAS  Google Scholar 

  • Blatt, M.R. & Clint, G.M. (1989). Mechanisms of fusicoccin action: kinetic modification and inactivation of K+ channels in guard cells. Planta, 178, 509–523.

    Article  CAS  Google Scholar 

  • Blatt, M.R., Thiel, G. & Trentham, D.R. (1990). Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature, 46, 366–369.

    Google Scholar 

  • Blum, W., Key, G. & Weiler, E.W. (1988). ATPase activity in plasmalemma-rich vesicles isolated by aqueous two-phase partitioning from Vicia faba mesophyll and epidermis: characterization and influence of abscisic acid and fusicoccin. Physiol. Plant., 72, 279–287.

    Article  CAS  Google Scholar 

  • Briskin, D.P. (1990). The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function. Biochim. Biophys. Acta, 1019, 95–109.

    Article  CAS  Google Scholar 

  • Brown, P.H. & Outlaw, W.H., Jr. (1982). Effect of fusicoccin on dark 14CO2 fixation by Vicia faba guard cell protoplasts. Plant Physiol., 70, 1700–1703.

    Article  CAS  Google Scholar 

  • Cocucci, M.C., Marr, E. (1991). Co-sedimentation of one form of plasma membrane H+-ATPase and of the fusicoccin receptor from radish microsomes. Plant Sci., 73, 45–54.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J. & Hedrich, R. (1991). Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta, 186, 143–153.

    Article  CAS  Google Scholar 

  • Cummins, W.R. & Sondheimer, E. (1973). Activity of the asymmetric isomers of abscisic acid in a rapid bioassay. Planta, 111, 365–369.

    Article  CAS  Google Scholar 

  • Curvetto, N. & Delmastro, S. (1990). A biochemical and physiological proposal for stomatal movement: possible involvement of adenosine 3′,5′-cyclic monophosphate. Plant Physiol. Biochem., 28, 1–13.

    Google Scholar 

  • DeSilva, D.L.R., Hetherington, A.M. & Mansfield, T.A. (1985a). Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol., 100, 473–482.

    Article  CAS  Google Scholar 

  • DeSilva, D.L.R., Cox, R.C., Hetherington, A.M. & Mansfield, T.A. (1985b). Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid. New Phytol., 101, 555–563.

    Article  CAS  Google Scholar 

  • Dohrmann, U., Hertel, R., Pesci, P., Cocucci, S.M., Marr, E., Randazzo, G. & Ballio, A. (1977). Localization of “in vitro” binding of the fungal toxin fusicoccin to plasma-membrane rich fractions from corn coleoptiles. Plant Sci. Lett., 9, 291–299.

    Article  CAS  Google Scholar 

  • Feyerabend, M. & Weiler, E.W. (1988). Characterization and localization of fusicoccin-binding sites in leaf tissues of Vicia faba L. probed with a novel radioligand. Planta, 174, 115–122.

    Article  CAS  Google Scholar 

  • Fischer, R.A. (1968). Stomatal opening: role of potassium uptake by guard cells. Science, 160, 784–785.

    Article  CAS  Google Scholar 

  • Gilroy, S., Read, N.D. & Trewavas, A.J. (1990). Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature, 346, 769–771.

    Article  CAS  Google Scholar 

  • Gilroy, S., Fricker, M.D., Read, N.D. & Trewavas, A.J. (1991). Role of calcium in signal transduction of Commelina guard cells. Plant Cell, 3, 333–344.

    CAS  Google Scholar 

  • Grantz, D.A., Ho, T.-H.D., Uknes, S.J., Cheeseman, J.M. & Boyer, J.S. (1985). Metabolism of abscisic acid in guard cells of Vicia faba L. and Commelina communis L. Plant Physiol., 78, 51–56.

    Article  CAS  Google Scholar 

  • Gunar, I.I., Zlotnikova, I.F. & Panchikin, L.A. (1975). Electrophysiological investigation of cells of the stomate complex in spiderwort. Fiziologiya Rastenii, 22, 810–813.

    Google Scholar 

  • Harris, M.J. & Outlaw, W.H., Jr. (1991). Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status. Plant Physiol., 95, 171–173.

    Article  CAS  Google Scholar 

  • Harris, M.J., Outlaw, W.H. Jr., Mertens, R. & Weiler, E.W. (1988). Water-stress-induced changes in the abscisic acid content of guard cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc. Natl. Acad. Sci. USA, 85, 2584–2588.

    Article  CAS  Google Scholar 

  • Hartung, W. (1983). The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell Environ., 6, 427–428.

    Article  CAS  Google Scholar 

  • Hedrich, R. & Neher, E. (1987). Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature, 239, 833–836.

    Article  Google Scholar 

  • Hedrich, R. & Schroedr, J.I. (1989). The physiology of ion channels and electrogenic pumps in higher plants. Ann. Rev. Plant Physiol. Mol. Biol., 40, 539–569.

    Article  Google Scholar 

  • Henson, I.E. (1981). Abscisic acid and after-effects of water stress in pearl millet (Pennisetum americanum (L.) Leeke). Plant Sci. Lett., 21, 129–135.

    Article  CAS  Google Scholar 

  • Hetherington, A.M. & Quatrano, R.S. (1991). Mechanisms of action of abscisic acid at the cellular level. Tansley Review No. 31. New Phytol., 119, 9–32.

    Article  CAS  Google Scholar 

  • Hosoi, S., Iino, M. & Shimazaki, K.-I. (1988). Outward-rectifying K+ channels in stomatal guard cell protoplasts. Plant Cell Physiol., 29, 907–911.

    CAS  Google Scholar 

  • Imamura, S.-I. (1943). Research about the mechanism of the turgor-fluctuation of the stomatal guard-cells. Jap. J. Bot., 12, 251–346.

    Google Scholar 

  • Ishikawa, H., Aizawa, H., Kishira, H., Ogawa, T. & Sakata, M. (1983). Light-induced changes of membrane potential in guard cells of Vicia faba. Plant and Cell Physiol., 24, 769–772.

    CAS  Google Scholar 

  • Keller, B.U., Hedrich, R. & Raschke, K. (1989). Voltage-dependent anion channels in the plasma membrane of guard cells. Nature, 341, 450–453.

    Article  Google Scholar 

  • Lee, Y. & Assmann, S.M. (1991). Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Proc. Natl. Acad Sci. USA., 88, 2127–2131.

    Article  CAS  Google Scholar 

  • Lee, Y., Tucker, E.B. & Crain, R.C. (1991). Effects of GTP-gamma-S and GTP-a-S on stomatal movements in Commelina communis L. Plant Physiol., S96, 67.

    Google Scholar 

  • MacRobbie, E.A.C. (1981). Effects of ABA in “isolated” guard cells of Commelina communis L. J. Expt. Bot., 32, 563–572.

    Article  CAS  Google Scholar 

  • MacRobbie, E.A.C. (1988). Control of ion fluxes in stomatal guard cells. Bot. Acta., 101, 140–148.

    CAS  Google Scholar 

  • MacRobbie, E.A.E. (1989). Calcium influx at the plasmalemma of isolated guard cells of Commelina communis. Effects of abscisic acid. Planta, 178, 231–241.

    Article  CAS  Google Scholar 

  • MacRobbie, E.A.C. (1990). Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid. Proc. R. Soc. Lond., 241, 214–219.

    Article  CAS  Google Scholar 

  • MacRobbie, E.A.C. (1991). Effect of ABA on ion transport and stomatal regulation. In Abscisic Acid: Physiology and Biochemistry, ed. W.J. Davies. BIOS Scientific Publishers, Oxford, pp. 153–168.

    Google Scholar 

  • Mansfield, T.A., Hetherington, A.M., Atkinson, C.J. (1990). Some current aspects of stomatal physiology. Ann. Rev. Plant Physiol. Plant Mol Biol., 41, 55–75.

    Article  CAS  Google Scholar 

  • McAinsh, M.R., Brownlee, C. & Hetherington, A.M. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature., 343, 186–188.

    Article  CAS  Google Scholar 

  • McAinsh, M.R., Brownlee, C., Sarsag, M., Webb, A.A.R. & Hetherington, A.M. (1991). Involvement of second messengers in the action of ABA. In Abscisic Acid: Physiology and Biochemistry, ed. W.J. Davies. BIOS Scientific Publishers, Oxford, pp. 137–152.

    Google Scholar 

  • Mittelheuser, C.J. & Van Steveninck, R.F.M. (1969). Stomatal closure and inhibition of transpiration induced by (RS)-abscisic acid. Nature, 221, 281–282.

    Article  CAS  Google Scholar 

  • Napier, J.A., Chapman, J.M. & Black, M. (1989). Calcium-dependent induction of novel proteins by abscisic acid in wheat aleurone tissue of different developmental stages. Planta, 179, 156–164.

    Article  CAS  Google Scholar 

  • Ogawa, T., Ishikawa, H., Shimada, K. & Shibata, K. (1978). Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta., 142, 61–65.

    Article  CAS  Google Scholar 

  • Pesci, P., Tognoli, L., Beffagna, N. & Marr, E. (1979). Solubilization and partial purification of a fusicoccin-receptor complex from maize microsomes. Plant Sci. Lett., 15, 313–322.

    Article  CAS  Google Scholar 

  • Raschke, K. & Humble, G.D. (1973). No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions. Planta, 115, 47–57.

    Article  CAS  Google Scholar 

  • Schaller, G.E. & Sussman, M.R. (1988). Phosphorylation of the plasma-membrane H+ATPase of oat roots by a calcium-stimulated protein kinase. Planta, 173, 509–518.

    Article  CAS  Google Scholar 

  • Schnabl, H. & Ziegler, H. (1975). The influence of aluminum ions on the movement of the stomata in Vicia faba epidermis strips. Z. Pflanzenphysiol., 74, 394–403.

    Google Scholar 

  • Schroeder, J.I. (1988). K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J. Gen. Physiol., 92, 667–683.

    Article  CAS  Google Scholar 

  • Schroeder, J.I., Hedrich, R. & Fernandez, J.M. (1984). Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature., 312, 361–362.

    Article  CAS  Google Scholar 

  • Schroeder, J.I., Raschke, K. & Neher, E. (1987). Voltage dependence of K+ channels in guard-cell protoplasts. Proc. Natl. Acad. Sci. USA, 84, 4108–4112.

    Article  CAS  Google Scholar 

  • Schroeder, J.I. & Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature, 338, 427–430.

    Article  Google Scholar 

  • Schroeder, J.I. & Hagiwara, S. (1990a). Voltage-dependent activation of Ca2+-regulated anion channels and K+ uptake channels in Vicia faba guard cells. In Calcium in Plant Growth and Development, ed. R.J. Leonard P.K. Hepler. Am. Soc. Plant Physiol. Symp. Series No. 4, pp. 144-150.

    Google Scholar 

  • Schroeder, J.I. & Hagiwara, S. (1990b). Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad Sci. USA., 87, 9305–9309.

    Article  CAS  Google Scholar 

  • Schumaker, K.S. & Sze, H. (1987). Inositol 1,4,5-triphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J. Biol. them., 262, 3944–3946.

    CAS  Google Scholar 

  • Schwartz, A. (1985). Role of Ca2+ and EGTA on stomatal movements in Commelina communis L. Plant Physiol., 79, 1003–1005.

    Article  CAS  Google Scholar 

  • Sharkey, T.D. & Raschke, K. (1980). Effects of phaseic acid and didhydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol., 65, 291–297.

    Article  CAS  Google Scholar 

  • Sharkey, T.D. & Raschke, K. (1981). Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol., 68, 1170–1174.

    Article  CAS  Google Scholar 

  • Skriver, K. & Mundy, J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell., 2, 503–512.

    CAS  Google Scholar 

  • Smith, G.N. & Willmer, C.M. (1988). Effects of calcium and abscisic acid on volume changes of guard cell protoplasts of Commelina. J. Exp. Bot., 39, 1529–1539.

    Article  CAS  Google Scholar 

  • Stout, R. & Cleland, R.E. (1980). Partial characterization of fusicoccin binding to receptor sites on oat root membranes. Plant Physiol., 66, 353–359.

    Article  CAS  Google Scholar 

  • Tester, M. (1990). Plant ion channels: whole-cell and single-channel studies. Tansley Review No. 21. New Phytol., 114, 305–340.

    Article  Google Scholar 

  • Thimann, K.V. & Tan, Z.-Y. (1988). The dependence of stomatal closure on protein synthesis. Plant Physiol., 86, 341–343.

    Article  CAS  Google Scholar 

  • Turner, N.C. & Graniti, A. (1969). Fusicoccin: a fungal toxin that opens stomata. Nature, 223, 1070–1071.

    Article  CAS  Google Scholar 

  • Van Kirk, C.A. & Raschke, K. (1978). Release of malate from epidermal strips during stomatal closure. Plant Physiol., 61, 374–375.

    Google Scholar 

  • Walton, D.C. (1983). Structure-activity relationships of abscisic acid analogs and metabolites. In Abscisic Acid, ed. F.T. Addicott. Praeger Scientific, New York, pp. 113–146.

    Google Scholar 

  • Wille, A.C. & Lucas, W.J. (1984). Ultrastructural and histochemical studies on guard cells. Planta, 160, 129–142.

    Article  Google Scholar 

  • Wright, S.T.C. & Hiron, R.W.P. (1969). (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature, 224, 719–720.

    Article  CAS  Google Scholar 

  • Zeevaart, J.A.D. & Boyer, G.L. (1984). Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol., 74, 934–939.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hite, D.R.C., Outlaw, W.H. (1994). Regulation of ion transport in guard cells. In: Alscher, R.G., Wellburn, A.R. (eds) Plant Responses to the Gaseous Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1294-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1294-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4565-0

  • Online ISBN: 978-94-011-1294-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics