Skip to main content

Dimension Theory for Ordered Sets

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

In 1930, E. Szpilrajn proved that any order relation on a set X can be extended to a linear order on X. It also follows that any order relation is the intersection of its linear extensions. B. Dushnik and E.W. Miller later defined the dimension of an ordered set P = 〈X;≤〉 to be the minimum number of linear extensions whose intersection is the ordering ≤.

For a cardinal m, \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} ^m}\) denotes the subsets of m, ordered by inclusion. As the notation indicates, \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} ^m}\) is a product of 2-element chains (linearly ordered sets). Any poset 〈X;≤〉 with ∣x∣ ≤ m can be embedded in \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} ^m}\). O. Ore proved that the dimension of a poset P is the least number of chains whose product contains P as a subposet. He also showed that the product of m nontrivial chains has dimension m. In particular, \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} ^m}\) has dimension m, a result of H. Komm. Thus, every cardinal is the dimension of some poset.

It is usually very difficult to calculate the dimension of any “standard” poset. However, dimension can be related to other parameters of a poset. For example, the dimension of a finite poset does not exceed the size of any maximal antichain. Also, T. Hiraguchi showed that any poset of dimension d ≥ 3 has at least 2d elements. Moreover, any integer ≥ 2d is the size of some poset of dimension d.

Let d be a positive integer. A poset is d-irreducible if it has dimension d and removal of any element lowers its dimension. Any poset whose dimension is at least d contains a d-irreducible subposet. Although there is only one 2-irreducible poset, there are infinitely many d-irreducible posets whenever d ≥ 3. The set of all 3-irreducible posets was independently determined by D. Kelly and W.T. Trotter, Jr. and J.I. Moore, Jr. There is a 3-irreducible poset of any size n not excluded by Hiraguchi; i.e., for any n ≥ 6. However, R.J. Kimble, Jr. has shown that a d-irreducible poset cannot have size 2d + 1 when d ≥ 4. If d ≥ 4 and n ≥ 2d but n ≠ 2d + 1, then there is a d-irreducible poset of size n.

A finite poset is planar if its diagram can be drawn in the plane without any crossing of lines. Planar posets have arbitrary finite dimension. However, K.A. Baker showed that a finite lattice is planar exactly when its dimension does not exceed 2. He also showed that the completion of a poset is a lattice that has the same dimension as the poset. Baker’s results and three papers of D. Kelly and I. Rival were used to obtain the list of 3-irreducible posets.

The approach of W.T. Trotter and J.I. Moore, Jr. rested on the observation of Dushnik and Miller that a poset has dimension at most 2 if and only if its incomparability graph is a comparability graph. T. Gallai’s characterization of comparability graphs in terms of excluded subgraphs was then applied.

Several other connections between dimension theory for posets and graph theory have been established. For example, posets with the same comparability graph have the same dimension. C.R. Platt reduced the planarity of a finite lattice to the planarity of an undirected graph obtained by adding an edge to its diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Aigner and G. Prins [1971] Uniquely partially orderable graphs, J. London Math. Soc. (2) 3, 260–266. MR43 #1866.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Ajtai [1973] On a class of finite lattices, Period. Math. Hungar. 4, 217–220. MR49 #8906.

    Article  MathSciNet  MATH  Google Scholar 

  • J.C. Arditti [1978] Partially ordered sets and their comparability graphs, their dimension and their adjacency, in Problèmes combinatoires et thérie des graphes, Orsay 1976, Colloq. int. CNRS No. 260, 5–8.

    Google Scholar 

  • J.C. Arditti and H.A. Jung [1980] The dimension of finite and infinite comparability graphs, J. London Math. Soc. (2) 21, 31–38.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Babai and D. Duffus [1981] Dimension and automorphism groups of lattices, Algebra Universalis 12, 279–289.

    Article  MathSciNet  MATH  Google Scholar 

  • K.A. Baker [1961] Dimension, join-independence, and breadth in partially ordered sets, (unpublished).

    Google Scholar 

  • K.A. Baker, P.C. Fishburn and F.S. Roberts [1971] Partial orders of dimension 2, Networks 2, 11–28. MR46 #104.

    Article  MathSciNet  Google Scholar 

  • B. Banaschewski [1956] Hüllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2, 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Birkhoff [1967] Lattice. Theory, 3rd. ed., Colloquium Publication 25, American Mathematical Society, Providence, R. I.

    Google Scholar 

  • K.P. Bogart [1973] Maximal dimensional partially ordered sets I. Hiraguchi’s Theorem, Discrete Math. 5, 21–32. MR47 #6562.

    Article  MathSciNet  MATH  Google Scholar 

  • K.P. Bogart and W.T. Trotter [1973] Maximal dimensional partially ordered sets II. Characterization of 2n-element posets with dimension n, Discrete Math. 5, 33–45. MR47 #6563.

    Article  MathSciNet  MATH  Google Scholar 

  • K.P. Bogart, I. Rabinovitch and W.T. Trotter [1976] A bound on the dimension of interval orders, J. Combinatorial Theory (Ser. A) 21 (1976), 319–328. MR54 #5059.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Bouchet [1971] Etude combinatoire des ordonnés finis, Thèse de Doctorat d’Etat, Université de Grenoble.

    Google Scholar 

  • V. Chvátal and P.L. Hammer [1977] Aggregation of inequalities in integer programming, Annals of Discrete Math. 1, 145–162.

    Article  Google Scholar 

  • O. Cogis [1980] La dimension Ferrers des graphes orientés, Thèse de Doctorat d’Etat, Université Curie, Paris.

    Google Scholar 

  • R.P. Dilworth [1950] A decomposition theorem for partially ordered sets, Ann. Math. 51, 161–166. MR11, p.309.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Ducamp [1967] Sur la dimension d’un ordre partiel, in Theorie des Graphes, Journées Internationales d’Etudes, Dunod, Paris; Gordon and Breach, New York, 103–112. MR36 #3684.

    Google Scholar 

  • B. Dushnik [1950] Concerning a certain set of arrangements, Proc. Amer. Math. Soc. 1, 788–796. MR12, p.470.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Dushnik and E.W. Miller [1941] Partially ordered sets, Amer. J. Math. 63, 600–610. MR13, p.73.

    Article  MathSciNet  Google Scholar 

  • P.C. Fishburn [1970] Intransitive indifference with unequal indifference intervals, J. Math. Psychol. 7, 144–149.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Gallai [1967] Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18, 25–66. MR36 #5026.

    Article  MathSciNet  MATH  Google Scholar 

  • M.R. Garey and D.S. Johnson [1979] Computers and intractability. A guide to the theory of NP-completeness, Freeman, San Francisco.

    Google Scholar 

  • M.R. Garey, D.S. Johnson and L. Stockmeyer [1976] Some simplified NP-complete graph problems, Theoret. Comp. Sci. 1, 237–267.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Ghouila-Houri [1962] Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre, C.R. Acad. Sci. Paris 254, 1370–1371. MR30 #2495.

    MathSciNet  MATH  Google Scholar 

  • P.C. Gilmore and A.J. Hoffman [1964] A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16, 539–548. MR31 #87.

    Article  MathSciNet  MATH  Google Scholar 

  • M.C. Golumbic [1977a] Comparability graphs and a new matroid, J. Combinatorial Theory (Ser. B) 22, 68–90. MR55 #12575.

    Article  MathSciNet  MATH  Google Scholar 

  • M.C. Golumbic [1977b] The complexity of comparability graph recognition and coloring, Computing 18, 199–203.

    Article  MathSciNet  MATH  Google Scholar 

  • M.C. Golumbic [1980] Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York. (Chapter 5) MR81e:68081.

    Google Scholar 

  • R. Gysin [1977] Dimension transitiv orientierbarer Graphen, Acta Math. Acad. Sci. Hungar. 29, 313–316. MR58 #5393.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Harzheim [1970] Ein Endlichkeitssatz über die Dimension teilweise geordneter Mengen, Math. Nachr. 46, 183–188. MR43 #113.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Hiraguchi [1951] On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1, 77–94. MR17, p.19.

    MathSciNet  MATH  Google Scholar 

  • T. Hiraguchi [1955] On the dimension of orders, Sci. Rep. Kanazawa Univ. 4, 1–20. MR17, p.1045.

    MathSciNet  Google Scholar 

  • D. Kelly [1977] The 3-irreducible partially ordered sets, Canad. J. Math. 29, 367–383. MR55 #205.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly [1980] Modular lattices of dimension two, Algebra Universalis 11, 101–104.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly [1981] On the dimension of partially ordered sets, Discrete Math. 35 (1981), 135–156.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly and I. Rival [1974] Crowns, fences, and dismantlable lattices, Canad. J. Math. 26, 1257–1271. MR54 #5064.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly and I. Rival [1975a] Planar lattices, Canad. J. Math. 27, 636–665. MR52 #2974.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly and I. Rival [1975b] Certain partially ordered sets of dimension three, J. Combinatorial Theory (Ser. A) 18, 239–242. MR50 #12828.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Kelly, J. Schönheim and R.E. Woodrow [1981] Relating vertex colorability of graphs and Hypergraphs, Univ. of Calgary Mathematics Research Paper No. 481.

    Google Scholar 

  • R.J. Kimble [1973] Exùtremal Problems in Dimension Theory for Partially Ordered Sets, Ph.D. thesis, M.I.T.

    Google Scholar 

  • H. Komm [1948] On the dimension of partially ordered sets, Amer. J. Math. 70, 507–520. MR10, P.22.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Kuratowski [1930] Sur le problème des courbes gauches en topologie, Fund. Math. 15, 271–283.

    MATH  Google Scholar 

  • E. L. Lawler and O. Vornberger [1981] The partial order dimension problem is NP-complete, preprint (Univ. of Calif, at Berkeley).

    Google Scholar 

  • B. Leclerc [1976] Arbres et dimension des ordres, Discrete Math. 14 (1976), 69–76. MR52 #7979.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Lovász [1973] Coverings and colorings of hypergraphs, in Proc. 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica Publishing, Winnipeg, 3–12.

    Google Scholar 

  • L. Lovász, J. Nešetřil, and A. Pultr [1980] On a product dimension of graphs, J. Combinatorial Theory (Ser.B) 29, 47–67.

    Article  MATH  Google Scholar 

  • S.B. Maurer and I. Rabinovitch [1978] Large minimal realizers of a partial order, Proc. Amer. Math. Soc. 66, 211–216. MR56 #8441.

    Article  MathSciNet  Google Scholar 

  • S.B. Maurer, I. Rabinovitch and W. T. Trotter [1980a] Large minimal realizers of a partial order II, Discrete Math. 31, 297–314.

    Article  MathSciNet  MATH  Google Scholar 

  • S.B. Maurer, I. Rabinovitch and W. T. Trotter [1980b] A generalization of Turán’s theorem, Discrete Math. 32, 167–189.

    MathSciNet  MATH  Google Scholar 

  • S.B. Maurer, I. Rabinovitch and W.T. Trotter [1980c] Partially ordered sets with equal rank and dimension, Congressus Numerantium 29, 627–637.

    MathSciNet  Google Scholar 

  • V. Novák [1961] The dimension of lexicographic sums of partially ordered sets (Czech., English summary), Casopis Pěst. Mat. 86, 385–391. MR24 #1847.

    MATH  Google Scholar 

  • O. Ore [1962] Theory of Graphs, Colloquium Publication 38, Amer. Math. Soc., Providence, R. I., (Section 10.4) MR27 #740.

    Google Scholar 

  • C.R. Platt [1976] Planar lattices and planar graphs, J. Combinatorial Theory (Ser.B) 21, 30–39.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Pretzel [1977] On the dimension of partially ordered sets, J. Combinatorial Theory [Ser. A) 22 (1977), 146–152. MR55 #206.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Rabinovitch [1973] The Dimension Theory of Semiorders and Interval Orders, Ph.D. thesis, Dartmouth College.

    Google Scholar 

  • I. Rabinovitch [1978a] The dimension of semiorders, J. Combinatorial Theory (Ser. A) 25, 50–61. MR58 #16435.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Rabinovitch [1978b] An upper bound on the dimension of interval orders, J. Combinatorial Theory (Ser. A) 25, 68–71.

    Article  MathSciNet  Google Scholar 

  • I. Rabinovitch and I. Rival [1979] The rank of a distributive lattice, Discrete Math. 25, 275–279.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Riguet [1951] Les relations de Ferrers, C.R. Acad. Sci. Paris 232, 1729–1730.

    MathSciNet  MATH  Google Scholar 

  • I. Rival [1974] Lattices with doubly irreducible elements, Canad. Math. Bull. 17, 91–95. MR50 #12837.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Rival [1976] Combinatorial inequalities for semimodular lattices of breadth two, Algebra Universalis 6, 303–311. MR55 #217.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Rival and B. Sands [1978] Planar sublattices of a free lattice I, Canad. J. Math. 30, 1256–1283.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Rival and B. Sands [1979] Planar sublattices of a free lattice II, Canad. J. Math. 31, 17–34.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Sands [1980] Generating sets for lattices of dimension two, Discrete Math. 29, 287–292.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Schmidt [1956] Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge, Arch. Math. 7, 241–249.

    Article  MATH  Google Scholar 

  • L.N. Shevrin and N.D. Filippov [1970] Partially ordered sets and their comparability graphs, Siberian Math. J. 11, 497–509 (648–667 in Russian original).

    Google Scholar 

  • J. Spencer [1971] Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hangar. 22, 349–353.

    Article  Google Scholar 

  • E. Szpilrajn [1930] Sur l’extension de l’ordre partiel, Fund. Math. 16 (1930), 386–389.

    MATH  Google Scholar 

  • W.T. Trotter [1974a] Dimension of the crown (**Math Type**), Discrete Math. 8, 85–103. MR49 #158.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1974b] Irreducible posets with large height exist, J. Combinatorial Theory (Ser. A) 17 (1974), 337–344. MR50 #6935.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1975a] Embedding finite posets in cubes, Discrete Math. 12, 165–172. MR51 #5426.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1975b] Inequalities in dimension theory for posets, Proc. Amer. Math. Soc. 47, 311–316. MR51 #5427.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1975c] A note on Dilworth’s embedding theorem, Proc. Amer. Math. Soc. 52, 33–39. MR51 #10188.

    MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1976a] A forbidden subposet characterization of an order-dimension inequality, Math. Systems Theory 10, 91–96. MR55 #7856.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1976b] A generalization of Hiraguchi’s inequality for posets, J. Combinatorial Theory (Ser. A) 20, 114–123. MR52 #10515.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter [1978a] Combinatorial problems in dimension theory for partially ordered sets, in Problèmes combinatoires et theorie des graphes, Colloq. int. CNRS No. 260 (1978), 403–406. MR80g:06002.

    Google Scholar 

  • W.T. Trotter [1978b] Some combinatorial problems for permutations, Congressus Numerantium 19 (1978), 619–632.

    Google Scholar 

  • W.T. Trotter [1981] Stacks and splits of partially ordered sets, Discrete Math. 35, 229–256.

    MathSciNet  MATH  Google Scholar 

  • W.T. Trotter and K.P. Bogart [1976a] Maximal dimensional partially ordered sets III. A characterization of Hiraguchi’s inequality for interval dimension, Discrete Math. 15, 389–400. MR54 #5061.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter and K.P. Bogart [1976b] On the complexity of posets, Discrete Math. 16, 71–82. MR54 #2553.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter and J.I. Moore [1976a] Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. 4, 361–368. MR56 #8437.

    Article  MathSciNet  Google Scholar 

  • W.T. Trotter and J.I. Moore [1976b] Some theorems on graphs and posets, Discrete Math. 15, 79–84. MR54 #5060.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter and J.I. Moore [1977] The dimension of planar posets, J. Combinatorial Theory (Ser. B) 22, 54-67. MR55 #7857.

    Article  MathSciNet  MATH  Google Scholar 

  • W.T. Trotter, J.I. Moore and D.P. Sumner [1976] The dimension of a comparability graph, Proc. Amer. Math. Soc. 60, 35–38. MR54 #5062.

    Article  MathSciNet  Google Scholar 

  • W.T. Trotter and J.A. Ross [1981a] Every t-irreducible partial order is a subposet of a t+1-irreducible partial order, preprint (Univ. of South Carolina).

    Google Scholar 

  • W.T. Trotter and J.A. Ross [1981b] For t≥3, every t-dimensional partial order can be embedded in a t+1-irreducible partial order, preprint (Univ. of South Carolina).

    Google Scholar 

  • R. Wille [1974] On modular lattices of order dimension two, Proc. Amer. Math. Soc. 43, 287–292. MR48 #8327.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Wille [1975] Note on the order dimension of partially ordered sets, Algebra Universalis 5, 443–444. MR52 #13536.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Yannakakis [1981] The complexity of the partial order dimension problem, preprint (Bell Labs, Murray Hill).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Kelly, D., Trotter, W.T. (1982). Dimension Theory for Ordered Sets. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics