Skip to main content

Capacities of Remote Sensing for Population Estimation in Urban Areas

  • Chapter
  • First Online:
Book cover Earthquake Hazard Impact and Urban Planning

Part of the book series: Environmental Hazards ((ENHA))

Abstract

In the past few decades, devastating earthquakes have caused high social and economic losses in cities. Earthquakes cannot be avoided, but the devastating impacts, especially fatalities, can be minimized through pre-event emergency response planning and preparedness. The development of emergency plans strongly relies on up-to-date population and inventory data. However, existing techniques for population data generation do not meet the requirements of many of today’s dynamic cities. In this context, the importance of remote sensing as a cutting-edge technology for data acquisition in urban areas is increasing. The present study analyzes the capacities and limitations of high resolution optical satellite imagery (IKONOS) for modeling population distribution in the district of Zeytinburnu in Istanbul, Turkey. The results show remote sensing to be an independent, up-to-date and area-wide data source. The use of remote sensing facilitates a mechanism to provide necessary quantitative information on urban morphology and population distribution in a fast and accurate way. The generated data do not have the quality of cadastral data sets but they meet the requirements of identifying bottlenecks, highly risky zones, etc. and can serve as a base for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Garni AM (1995) Mathematical predictive models for population estimation in urban areas using space products and GIS technology. Math Comput Model 22:95–107. doi:10.1016/0895-7177(95)00104-A

    Article  Google Scholar 

  • Almeida C, Souza I, Durand AC, Pinho C, Pereira M, Feitosa R (2007) Multilevel object-oriented classification of Quickbird images for urban population estimates. In: Samet H, Schneider M, Shahabi C (eds) Proceedings of the 15th International Symposium on Advances in Geographic Information Systems. New York. USA. doi:10.1145/1341012.1341029

    Google Scholar 

  • Ambraseys N, Finkel C (1991) Long-term seismicity of Istanbul and of the Marmara Sea. Terra Nova 3:527–539. doi:10.1111/j.1365-3121.1991.tb00188.x

    Article  Google Scholar 

  • Ansal A, Akinci A, Cultrera G, Erdik M, Pessina V, Tönük G, Ameri G (2009) Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey). Soil Dyn Earthq Eng 29:699–709. doi:10.1016/j.soildyn.2008.07.006

    Article  Google Scholar 

  • Applied Technology Council (ATC) (1996) ATC-40. Seismic evaluation and retrofit of concrete buildings. Volume 1. Redwood City. California. USA. http://www.atcouncil.org/pdfs/atc40toc.pdf. Accessed 15 Sep 2011

  • Batuk F, Sengezer B, Emem O (2005) The new zoning approach for earthquake risk assessment. In: Oosterom P van, Zlatanova S, Fendel E (eds) Geo-information for disaster management. Springer, Berlin-Heidelberg, pp 1225–1237

    Google Scholar 

  • Baycan-Levent T (2003) Globalization and development strategies for Istanbul: Regional policies and great urban transformation projects. 39th ISoCaRP Congress 2003. http://www.isocarp.net/Data/case_studies/359.pdf. Accessed 12 Oct 2010

  • Beygo C, Ozcevik O, Turk S, Akcakaya I, Sen K, Damen T (2006) Milestones of Zeytinburnu Municipality through sustainable urban regeneration: From vision to action. 42nd ISoCaRP Congress 2006. http://www.isocarp.net/Data/case_studies/777.pdf. Accessed 12 Oct 2010

  • Cakir G, Ün C, Baskent EZ, Köse S, Sivrikaya F, Keles S (2008) Evaluating urbanization, fragmentation and land use/land cover change pattern in Istanbul City, Turkey from 1971 to 2002. Land Degrad Dev 19:663–675. doi:10.1002/ldr.859

    Article  Google Scholar 

  • Chen K (1998) Correlations between census dwelling data and remotely sensed data. Proceedings: SIRC 98–10th annual colloquium of the spatial information research centre. Dunedin. New Zealand.

    Google Scholar 

  • Chen K (2002) An approach to linking remotely sensed data and areal census data. Int J Remote Sens 23:37–48. doi:10.1080/01431160010014297

    Article  Google Scholar 

  • Chen K, Su W, Li J, Sun Z (2009) Hierarchical object oriented classification using very high imagery and LIDAR data over urban areas. Adv Space Res 43:1101–1110. doi:10.1016/j.asr.2008.11.008

    Article  Google Scholar 

  • Cheng F, Thiel KH (1995) Delimiting the building heights in a city from the shadow in a panchromatic SPOT-image—Part 1. Test of forty-two buildings. Int J Remote Sens 19:409–415. doi:10.1080/01431169508954409

    Article  Google Scholar 

  • Dell’Aqua F, Lisini G, Gamba P (2009). Experiences in optical and SAR imagery analysis for damage assessment in the Wuhan, May 2008 earthquake. Geoscience and Remote Sensing Symposium (IGARSS) (2009). IEEE International 4:37–40. doi:10.1109/IGARSS.2009.5417603

    Google Scholar 

  • Dökmeci V, Berköz L (1994) Transformation of Istanbul from a monocentric to a polycentric city. Eur Plan Stud 2(2):193–205. doi:10.1080/09654319408720259

    Article  Google Scholar 

  • EMI (2005) Istanbul, Turkey. Disaster risk management profile. 3 CD city profile series—current working document. http://emi.pdc.org/cities/CP-Istanbul-09-05.pdf. Accessed 07 April 2010

  • Erdik M, Durukal E (2008) Earthquake risk and its mitigation in Istanbul. Nat Hazards 44:181–197. doi:10.1007/s11069-007-9110-9

    Article  Google Scholar 

  • Erdik M, Demircioglu M, Sesetyan K, Durukal E, Siyahi B (2004) Earthquake hazard in the Marmara Region, Turkey. Soil Dyn Earthq Eng 24:605–631. doi:10.1016/j.soildyn.2004.04.003

    Article  Google Scholar 

  • Ergenc M, Ilkisik O, Turk M (2005) Earthquake risk and mitigation studies in Istanbul. EGU General Assembly 2006. NH 9.07—natural hazards impact on urban areas and infrastructure. Poster Presentation. Vienna. Austria. http://www.euromedina.org/bibliotheque_fichiers/Doc_RisksIstanbul.pdf. Accessed 14 Sep 2011

  • Esch T (2006) Automatisierte Analyse von Siedlungsflächen auf der Basis höchstauflösender Radardaten. Dissertation, Bayerische Julius-Maximilians Universität Würzburg. Germany

    Google Scholar 

  • Esch T, Thiel M, Schenk A, Roth A, Müller A, Dech A (2010) Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE T Geosci Remote 48(2):905–916. doi:10.1109/TGRS.2009.2037144

    Article  Google Scholar 

  • Fernandez J (2005) Sound Practice No. 1. An earthquake Master Plan for Istanbul. 3 cd Sound Practice Series. Istanbul. Turkey. http://emi.pdc.org/soundpractices/Istanbul/SP1-Istan-Earthq-Master-Plan.pdf. Accessed 13 Sep 2011

  • GENAR (2004a) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Büyük Sanayi Raporu. Temmuz 2004. Istanbul. Turkey.

    Google Scholar 

  • GENAR (2004b) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Kücük Sanayi Raporu. Temmuz 2004. Istanbul. Turkey.

    Google Scholar 

  • GENAR (2004c) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Kücük Sanayi. Mahalle ve Bölge Raporlari. Temmuz 2004. Istanbul. Turkey.

    Google Scholar 

  • Görgülü Z (2002) Istanbul. Die konsumierte Stadt. GeoPoint Nr. 11. Die sozialgeographische Hauspostille. Selbstverlag Lehrstuhl für Sozial- und Wirtschaftgeographie. Universität Augsburg. Germany

    Google Scholar 

  • Hartl P, Cheng F (1995) Delimiting the building heights in a city from the shadow on a panchromatic SPOT-image: Part 2: Test of a complete city. Int J Remote Sens 16:2829–2842. doi:10.1080/01431169508954594

    Article  Google Scholar 

  • Harvey J (2002) Population estimation models based on individual TM pixels. Photogramm Eng Rem S 68(11):1181–1192

    Google Scholar 

  • IEMP (2003) Earthquake Master Plan for Istanbul. Metropolitan Municipality of Istanbul. Planning and Construction Directorate. Geotechnical and Earthquake Investigation Department. Bogazici University, Istanbul Technical University, Middle East Technical University, Yildiz Technical University. 7. July 2003. http://www.dmc.metu.edu.tr/DMC/download.php?fname=./AnaSayfa/Dosyalar/Raporlar/IBB.IDMP.ENG-comp.pdf. Accessed 01 Sep 2011

  • Iisaka J, Hegedus E (1982) Population estimation from Landsat imagery. Remote Sens Environ 12:259–272. doi:10.1016/0034-4257(82)90039-6

    Article  Google Scholar 

  • Interactive City Map of Istanbul. Istanbul Sehir Rehberi, IMM. http://sehirrehberi.ibb.gov.tr/map.aspx. Accessed 10 Oct 2010

  • Irvin B, McKeown D (1989) Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE T Syst Man Cyb 19:1564–1575. doi:10.1109/21.44071

    Article  Google Scholar 

  • JICA and IMM (2002a) The Study on A Disaster Prevention/Mitigation Basic Plan in Istanbul including Seismic Microzonation in the Republic of Turkey. Final Report. Main Report. (JICA—Japan International Cooperation Agency; IMM—Istanbul Metropolitan Municipality)

    Google Scholar 

  • JICA and IMM (2002b) The Study on A Disaster Prevention/Mitigation Basic Plan in Istanbul including Seismic Microzonation in the Republic of Turkey. Final Report Volume I. Summary. (JICA—Japan International Cooperation Agency; IMM—Istanbul Metropolitan Municipality)

    Google Scholar 

  • Kocaman S, Zhang L, Gruen A, Poli D (2006) 3D city modeling from high-resolution satellite Images. Proceedings: ISPRS workshop on topographic mapping from space. Ankara. Turkey.

    Google Scholar 

  • Kubanek J (2011) Comparison of GIS-based and high resolution satellite imagery population modelling. A case study for Istanbul. Ibidem-Verlag, Stuttgart.

    Google Scholar 

  • Kubanek J, Kappas M, Nolte E, Wenzel F, Taubenböck H (2010) Modelling of population dynamics: GIS versus remote sensing—a case study for Istanbul. The International Emergency Management Society (TIEMS) 17th Annual Conference Proceedings. June 8th–11th. 2010. Beijing. China.

    Google Scholar 

  • Liu X, Clarke K, Herold M (2006) Population density and image texture: a comparison study. Photogramm Eng Rem S 72(2):187–196. doi:0099-1112/06/7202–0187/$3.00/0

    Google Scholar 

  • Lo C (1995) Automated population and dwelling unit estimation from high-resolution satellite images: a GIS approach. Int J Remote Sens 16(1):17–34. doi:10.1080/01431169508954369

    Article  Google Scholar 

  • Lu D, Weng Q, Li G (2006). Residential population estimation using a remote sensing derived impervious surface approach. Int J Remote Sens 27(16):3553–3570. doi:10.1080/01431160600617202

    Article  Google Scholar 

  • Massalabi A, He D-C, Benie GB, Beaudry E (2004) Detecting information under and from shadow in panchromatic Ikonos images of the city of Sherbrooke. Geoscience and Remote Sensing Symposium (IGARSS), 2004. IEEE International. 3:2000–2003. doi:10.1109/IGARSS.2004.1370740

    Google Scholar 

  • Mesev V (2005) Identification and characterization of urban building patterns using IKONOS imagery and point-based postal data. Comput Environ Urban 29:541–557. doi:10.1016/j.compenvurbsys.2005.01.003

    Article  Google Scholar 

  • Mitchell J (1999) Mega cities and natural disasters: a comparative analysis. GeoJournal 49:137–142. doi:10.1023/A:1007024703844

    Article  Google Scholar 

  • Parsons T (2004) Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey. J Geophys Res 109:B05304. doi:10.1029/2003JB002667

    Google Scholar 

  • Setiadi N, Taubenböck H, Raupp S, Birkmann J (2010) Integrating socio-economic data in spatial analysis: An exposure analysis method for planning urban risk mitigation. 15th International Conference on Urban Planning and Regional Development in the Information Society (REALCORP), Vienna, Austria. GeoMultimedia 2010. 367–374

    Google Scholar 

  • Sever S, Erek E, Vanholder R, Akoglu E, Yavuz M, Ergin H, Tekce M, Korular D, Tülbek M, Keven K, Vlem B van, Lameire N (2001) The Marmara earthquake: epidemiological analysis of the victims with nephrological problems. Kidney Int 60:1114–1123. doi:10.1046/j.1523–1755.2001.0600031114.x

    Article  Google Scholar 

  • Sohn G, Dowman I (2007) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm 62:43–63. doi:10.1016/j.isprsjprs.2007.01.001

    Article  Google Scholar 

  • Souza I, Pereira M, Kurkdijan M (2003) Evaluation of high resolution satellite images for urban population estimation. Instituto National de Pesquisas Espacias. Aceito para apresentacao no 3° Simposio de Sensoriamento Remoto de Areas Urbanas, Istambul, 11–13 de junho, 2002– Turquia. Sao Jose dos Campos. Brazil. http://mtc-m12.sid.inpe.br/col/sid.inpe.br/marciana/2003/04.01.10.18/doc/publicacao.pdf. Accessed 10 Oct 2010

  • Rottensteiner F, Trinder J, Clode S, Kubik K (2007) Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS J Photogramm 62:135–149. doi:10.1016/j.isprsjprs.2007.03.001

    Article  Google Scholar 

  • Taubenböck H (2008) Vulnerabilitätsabschätzung der erdbebengefährdeten Megacity Istanbul mit Methoden der Fernerkundung. Dissertation, Bayerische Julius-Maximilians Universität Würzburg. Germany

    Google Scholar 

  • Taubenböck H, Roth A (2007) A transferable and stable object oriented classification approach in various urban areas and various high resolution sensors. 2007 Urban Remote Sensing Joint Event. doi:10.1109/URS.2007.371828

    Google Scholar 

  • Taubenböck H, Roth A, Dech S (2007) Linking structural urban characteristics derived from high resolution satellite data to population distribution. In: Rumor M, Coors V, Fendel E, Zlatanova S (eds) Urban Data Management. Annual 2007. Taylor & Francis Group, London. United Kingdom

    Google Scholar 

  • Taubenböck H, Wurm M, Setiadi N, Gebert N, Roth A, Strunz G, Birkmann J, Dech S (2009) Integrating remote sensing and social science—the correlation of urban morphology with socio-economic parameters. In: Urban remote sensing joint event. Shanghai. China. doi:10.1109/URS.2009.5137506

    Google Scholar 

  • Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55:117–133. doi:10.1080/14498596.2010.487854

    Article  Google Scholar 

  • TurkStat (2010) Address based population registration system. Population census results, 2009. Turkish Statistical Institute, Prime Ministry, Republic of Turkey. Press Release. http://www.turkstat.gov.tr. Accessed 14 April 2010

  • United Nations (2008) World urbanization prospects: the 2007 revision. United Nations Department of Social and Economic Affairs/Population Division. New York. United States

    Google Scholar 

  • Wenzel F, Bendimerad F, Sinha R (2007) Megacities—megarisks. Nat Hazards 42:481–491. doi:10.1007/s11069-006-9073-2

    Article  Google Scholar 

  • Wu C, Murray A (2005) A cokriging method for estimating population density in urban areas. Computers Environ Urban 29:558–579. doi:10.1016/j.compenvurbsys.2005.01.006

    Google Scholar 

  • Wu C, Murray A (2007) Population estimation using Landsat enhanced thematic mapper imagery. Geogr Anal 39:26–43. doi:10.1111/j.1538-4632.2006.00694.xv

    Article  Google Scholar 

  • Wurm M, Taubenböck H, Schardt M, Esch T, Dech S (2011) Object-based image information fusion using multisensor earth observation data over urban areas. Int J Image Data Fusion 2:121–147. doi:10.1080/19479832.2010.543934

    Article  Google Scholar 

Download references

Acknowledgments

The present study was developed in a cooperation of the Center for Disaster Management and Risk Reduction Technology (CEDIM) at the Karlsruhe Institute of Technology (KIT), the Cartography, GIS and Remote Sensing Section of the Institute of Geography at the University of Göttingen, Germany and the German Remote Sensing Data Center (DFD) at the German Aerospace Center (DLR).

We gratefully acknowledge the support of Mustafa Erdik, Tamer Soylu, and Dietmar Borst for providing comprehensive data on Istanbul. Special thanks go to James Daniell and the anonymous reviewers for their extensive professional comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kubanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kubanek, J., Nolte, EM., Taubenböck, H., Wenzel, F., Kappas, M. (2014). Capacities of Remote Sensing for Population Estimation in Urban Areas. In: Bostenaru Dan, M., Armas, I., Goretti, A. (eds) Earthquake Hazard Impact and Urban Planning. Environmental Hazards. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7981-5_3

Download citation

Publish with us

Policies and ethics