Skip to main content

Abstract

There is a wealth of data on bird phenology, particularly on the timing of spring migration and the timing of breeding. Over the last decade or so there has emerged a large and growing literature examining changes in bird phenology and the likely causes of those changes. Here we give examples of changes in migration and breeding, with data originating from both amateur citizen science schemes and rigorously controlled schemes run by scientists. The overwhelming evidence is that spring migration and breeding have both got earlier. The likely cause of these changes is an increase in temperature, but other factors are also possible. Notwithstanding this general pattern it is also clear that responses are species-specific and may also vary from location to location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosini R, Møller AP, Saino N (2009) A quantitative measure of migratory connectivity. J Theor Biol 257:203–211

    Article  PubMed  Google Scholar 

  • Balbontín J, Møller AP, Hermosell IG, Marzal A, Reviriego M, de Lope F (2009) Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J Anim Ecol 78:981–989

    Article  PubMed  Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298

    Article  PubMed  CAS  Google Scholar 

  • Both C, Artemyev AV, Blaauw B et al (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662

    Article  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704

    Article  PubMed  CAS  Google Scholar 

  • Buse A, Dury SJ, Woodburn RJW, Perrins CM, Good JEG (1999) Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Func Ecol 13(suppl 1):74–82

    Article  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222

    Article  PubMed  CAS  Google Scholar 

  • Crick HQP, Gibbons DW, Magrath RD (1993) Seasonal variation in clutch size in British birds. J Anim Ecol 62:263–273

    Article  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Dunn PO (2004) Breeding dates and reproductive performance. In: Møller AP, Fiedler W, Berthold P (eds) Birds and climate change. Elsevier, San Diego

    Google Scholar 

  • Dunn PO, Winkler DW (1999) Climate change has affected the breeding date of tree swallows throughout North America. Proc R Soc Lond B 266:2487–2490

    Article  Google Scholar 

  • Dunn P, Winkler D, Whittingham L, Hannon S, Robertson R (2011) A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92:450–461

    Article  PubMed  Google Scholar 

  • Ellegren H (1990) Timing of autumn migration in Bluethroats Luscinia s.svecica depends on timing of breeding. Ornis Fennica 67:13–17

    Google Scholar 

  • Filippi-Codacciuoni O, Moussus JP, Urcun JP, Jiguet F (2010) Advanced departure dates in long-distance migratory raptors. J Ornithol 151:687–694

    Article  Google Scholar 

  • Geen G (2002) Common Chiffchaff (Chiffchaff) Phylloscopus collybita. In: Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR (eds) The migration atlas: movements of the birds of Britain and Ireland. T and AD Poyser, London

    Google Scholar 

  • Gilyazov A, Sparks T (2002) Change in the timing of migration of common birds at the Lapland nature reserve (Kola Peninsula, Russia) during 1931–1999. Avian Ecol Behav 8:35–47

    Google Scholar 

  • Halupka L, Dyrcz A, Borowiec M (2008) Climate change affects breeding of reed warblers Acrocephalus scirpaceus. J Avian Biol 39:95–100

    Article  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633

    Article  PubMed  CAS  Google Scholar 

  • Jenkins D, Sparks TH (2010) The changing bird phenology of Mid Deeside, Scotland 1974–2010. Bird Stud 57:407–414

    Article  Google Scholar 

  • Jenni L, Kéri M (2003) Timing of autumn bird migration under climate change: advances in long distance migrants, delays in short distance migrants. Proc R Soc Lond B 270:1467–1472

    Article  Google Scholar 

  • Kok OB, Van Ee CA, Nel DG (1991) Daylength determines departure date of the spotted flycatcher Muscicapa striata from its winter quarters. Ardea 79:63–66

    Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Lehikoinen A, Jaatinen K (2012) Delayed autumn migration in northern European waterfowl. J Ornithol 153:563–570

    Article  Google Scholar 

  • Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Ludwichowski I (1997) Long-term changes of wing-length, body mass and breeding parameters in first-time breeding females of goldeneyes (Bucephala clangula clangula) in Northern Germany. Vogelwarte 39:103–116

    Google Scholar 

  • Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable carbon isotopes. Science 282:1884–1886

    Article  PubMed  CAS  Google Scholar 

  • Mason CF (1995) Long-term trends in the arrival dates of spring migrants. Bird Stud 42:182–189

    Article  Google Scholar 

  • Mitchell GW, Newman AEM, Wikelski M, Norris DR (2012) Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol. doi:10.1111/j.1365-2656.2012.01978.x

    PubMed  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200

    Article  PubMed  Google Scholar 

  • Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61

    Article  Google Scholar 

  • Ottosson U, Bairlein F, Hjort C (2002) Migration patterns of Palaearctic Acrocephalus and Sylvia warblers in north-eastern Nigeria. Vogelwarte 41:249–262

    Google Scholar 

  • Sæther BE, Tufto J, Engen S, Jerstad K, Røstad OW, Skåtan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856

    Article  PubMed  Google Scholar 

  • Saino N, Szép T, Romano M, Rubolini D, Spina F, Møller AP (2004) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25

    Article  Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    Article  PubMed  CAS  Google Scholar 

  • Sokolov LV (2000) Spring ambient temperature as an important factor controlling timing of arrival, breeding, post-fledging dispersal and breeding success of Pied Flycatchers Ficedula hypoleuca in Eastern Baltic. Avian Ecol Behav 5:79–104

    Google Scholar 

  • Sokolov LV (2006) Influence of the global warming on the timing of migration and breeding of passerines in the 20th century. Entomol Rev 86:59–81

    Article  Google Scholar 

  • Sokolov LV, Gordienko NS (2008) Has recent climate warming affected the dates of bird arrival to the Il’men Reserve in the Southern Urals? Russ J Ecol 39:56–62

    Article  Google Scholar 

  • Sokolov LV, Kosarev VV (2003) Relationship between timing of arrival of passerines to the Courish Spit and North Atlantic Oscillation index (NAOI) and precipitation in Africa. Proc Zool Inst Russ Acad Sci 299:141–154

    Google Scholar 

  • Sokolov LV, Payevsky VA (1998) Spring temperatures influence year-to-year variations in the breeding phenology of passerines on the Courish Spit, eastern Baltic. Avian Ecol Behav 1:22–36

    Google Scholar 

  • Sokolov LV, Markovets MY, Shapoval AP, Morozov YG (1998) Long-term trends in the timing of spring migration of passerines on the Courish spit of the Baltic sea. Avian Ecol Behav 1:1–21

    Google Scholar 

  • Sokolov LV, Markovets MY, Morozov YG (1999) Long-term dynamics of the mean date of autumn migration in passerines on the Courish spit of the Baltic sea. Avian Ecol Behav 2:1–18

    Google Scholar 

  • Sparks TH, Braslavská O (2001) The effects of temperature, altitude and latitude on the arrival and departure dates of the swallow Hirundo rustica in the Slovak Republic. Int J Biomet 45:212–216

    Article  CAS  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Mason CF (2004) Can we detect change in the phenology of winter migrant birds in the UK? Ibis 146(1):57–60

    Article  Google Scholar 

  • Sparks TH, Roberts DR, Crick HQP (2001) What is the value of first arrival dates of spring migrants in phenology? Avian Ecol Behav 7:75–85

    Google Scholar 

  • Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Lehikoinen EA, Rainio K, Sokolov LV, Walker D (2005) Examining the total arrival distribution of migratory birds. Glob Change Biol 11:22–30

    Article  Google Scholar 

  • Sparks TH, Huber K, Bland RL, Crick HQP, Croxton PJ, Flood J, Loxton RG, Mason CF, Newnham JA, Tryjanowski P (2007) How consistent are trends in arrival (and departure) dates of migrant birds in the UK? J Ornithol 148:503–511

    Article  Google Scholar 

  • Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc Lond B 278:3437–3443

    Article  Google Scholar 

  • Sueur F, Triplet P (2001) Réchauffement climatique: les passereaux arrivent-ils plus tôt au printemps? Avifaune Picardie 1:111–120

    Google Scholar 

  • Thomas DW, Bourgault P, Shipley B, Perret P, Blondel J (2010) Context-dependent changes in the weighting of environmental cues that initiate breeding in a temperate passerine, the Corsican blue tit (Cyanistes caeruleus). Auk 127:129–139

    Article  Google Scholar 

  • Thorup K, Tøttrup AP, Rahbek C (2007) Patterns of phenological changes in migratory birds. Oecologia 151:697–703

    Article  PubMed  Google Scholar 

  • Tøttrup AP, Thorup K, Rahbek C (2006) Changes in timing of autumn migration in north European songbird populations. Ardea 94:527–536

    Google Scholar 

  • Tryjanowski P, Kuźniak S, Sparks T (2002) Earlier arrival of some farmland migrants in western Poland. Ibis 144:62–68

    Article  Google Scholar 

  • Tryjanowski P, Kuźniak S, Sparks TH (2005) What affects the magnitude of change in first arrival dates of migrant birds? J Ornithol 146:200–205

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond B 272:2561–2569

    Article  Google Scholar 

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond B 265:1867–1870

    Article  Google Scholar 

  • Winkel W, Hudde H (1997) Long-term trends in reproductive traits of tits (Parus major, P. caeruleus) and Pied Flycatchers Ficedula hypoleuca. J Avian Biol 28:187–190

    Article  Google Scholar 

  • Winkler DW, Dunn PO, McCulloch CE (2002) Predicting the effects of climate change on avian life-history traits. Proc Natl Acad Sci USA 99:13595–13599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim H. Sparks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sparks, T.H., Crick, H.Q.P., Dunn, P.O., Sokolov, L.V. (2013). Birds. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_24

Download citation

Publish with us

Policies and ethics