Skip to main content

Abstract

Soil’s ecosystem services (ESs), provisions of tangible goods and intangible environments and processes, are governed by its capital endowment (inherent characteristics such as clay content) and capacity to transform managerial inputs into productivity. Thus, soil quality refers to its capacity to provide and sustain a range of ESs and functions of interest to human and for maintenance of ecosystem health. Provisions of these services and functions also depend on land use (e.g., arable, pastoral, silvicultural, urban, recreational, spiritual). Because of strong interactivity, management to enhance some ESs can jeopardize others or lead to some adverse degradation processes (e.g., accelerated erosion, water pollution, decline of biodiversity). Similarly, production of biofuels can exacerbate competition with food production for land, water, energy, and nutrients. The abrupt climate change (ACC), as an example of human footprint caused by the use of natural resources, also impacts ESs and the underlying processes. Developing mechanisms and identifying/implementing policies for payments to land managers for enhancing ESs such as carbon (C) sequestration can promote adoption of best management practices (BMPs) and facilitate restoration of degraded soils and ecosystems. Recarbonization of the biosphere and sequestration of soil organic carbon (SOC) are important strategies to enhancing and sustaining ESs and functions of natural and managed ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Abrupt climate change

BMPs:

Best Management Practices

BNF:

Biological nitrogen fixation

ESs:

Ecosystem services

GHGV:

Greenhouse Gas Value

GHGs:

Greenhouse gases

INM:

Integrated Nutrient Management

IPM:

Integrated Pest Management

MRT:

Mean residence time

NT:

No-till

NUE:

Nutrient use efficiency

OM:

Organic matter

PES:

Payments for Ecosystem Services

SOC:

Soil organic carbon

SQI:

Soil Quality Index

SLM:

Sustainable land management

WUE:

Water use efficiency

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Alluvione F, Moretti B, Sacco D, Grignani C (2011) EUE (energy use efficiency) of cropping systems for sustainable agriculture. Energy 36:4468–4481

    Article  Google Scholar 

  • Anderson-Teixeira KJ, DeLucia EH (2011) The greenhouse gas value of ecosystems. Glob Chang Biol 17:425–438

    Article  Google Scholar 

  • Asakawa S (1993) Denitrifying ability of indigenous strains of Bradrhizobium japonicum isolated from fields under paddy-upland rotation. Biol Fertil Soils 15:196–200

    Article  CAS  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbances for herbivores and pathogens. Total Sci Environ 262:263–286

    Article  CAS  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manage 24:223–234

    Article  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration – what do we really know? Agric Ecosyst Environ 118:1–5

    Article  CAS  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperate-induced drought stress. Nature 405:668–672

    Article  PubMed  CAS  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci 107(22):10120–10124

    Article  PubMed  CAS  Google Scholar 

  • Bell MJ, Wall E, Russell G, Simm G, Stott AW (2011) The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J Dairy Sci 94:3662–3678

    Article  PubMed  CAS  Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404

    Article  PubMed  Google Scholar 

  • Bernués A, Ruiz R, Oaizola A, Villalba D, Casasús I (2011) Sustainability of pasture-based livestock farming systems in the European Mediterranean context: synergies and trade-offs. Livest Sci 139:44–57

    Article  Google Scholar 

  • Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31:1–79

    Article  CAS  Google Scholar 

  • Bigler C, Braker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2008) No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Sci Soc Am J 72:639–701

    Article  CAS  Google Scholar 

  • Borrvall C, Ebenman B, Jonsson T (2000) Biodiversity lessons the risk of cascading extinction in model food webs. Ecol Lett 3:131–136

    Article  Google Scholar 

  • Boyd J, Banzhaf S (2007) What are ecosystem services? The need for standardized environmental accounting units. Ecol Econ 63:616–626

    Article  Google Scholar 

  • Brandt P (2011) Gefährund der “food security” durch die Auswirkungen des Klimawandels. J Verbr Lebensm 6:253–275

    Article  Google Scholar 

  • Bremer E, Janzen HH, Ellert BH, McKenzie RH (2011) Carbon, nitrogen, and greenhouse gas balances in an 18-year cropping system study on the northern Great Plains. Soil Sci Soc Am J 75:1493–1502

    Article  CAS  Google Scholar 

  • Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008) Rapid carbon response of peatlands to climate change. Ecology 89(11):3041–3048

    Article  Google Scholar 

  • Brock C, Fließbach A, Oberholzer H-R, Schulz F, Wiesinger K, Reinicke F, Koch W, Pallutt B, Dittman B, Zimmer J, Hülsbergen K-J, Leithold G (2011) Relation between soil organic matter and yield levels of nonlegume crops in organic and conventional farming systems. J Plant Nutr Soil Sci 174:568–575

    Article  CAS  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergistic extinction dynamics under global change. Trends Ecol Evol 23:453–460

    Article  PubMed  Google Scholar 

  • Brown TC, Hobbins MT, Ramirez JA (2008) Spatial distribution of water supply in the conterminous United States. J Am Water Resour Assoc 44:1474–1487

    Article  Google Scholar 

  • Ceschia E, Béziat P, Dejoux JF et al (2010) Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric Ecosyst Environ 139:363–383

    Article  Google Scholar 

  • Chappel MJ, LaValle LA (2011) Food security and biodiversity: can we have both? An agroecological analysis. Agric Hum Values 28:3–26. doi:10.1007/s10460-009-9251-4

    Article  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Strømman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenerg 3:413–426

    Article  CAS  Google Scholar 

  • Chirinda N, Olesen JE, Porter JR, Schjønning P (2010) Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric Ecosyst Environ 139:584–594

    Article  CAS  Google Scholar 

  • Commoner B (1971) The closing circle: nature, man and technology. Bantam Books, New York

    Google Scholar 

  • Costanza R, d’Arge R, de Groots R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Crosson P, Shalloo L, O’Brien D, Langigan GJ, Foley PA, Boland TM, Kenny DA (2011) A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim Feed Sci Technol 166–167:29–45

    Article  CAS  Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10

    Article  Google Scholar 

  • Dale VH, Polasky S (2007) Measures of the effects of agricultural practices on ecosystem services. Ecol Econ 64:286–296

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP (2000) The interplay between climate change, forests, and disturbances. Sci Total Environ 262:201–204

    Article  PubMed  CAS  Google Scholar 

  • Dale VH, Mulholland P, Olsen LM, Feminella J, Maloney K, White DC, Peacock A, Foster T (2004) Selecting a suite of ecological indicators for resource management. In: Kapustka LA, Gilbraith H, Luxon M, Biddinger GR (eds) Landscape ecology and wildlife habitat evaluation: critical information for ecological risk assessment, land-use management activities and biodiversity enhancement practices. ASTM STP 11813. ASTM International, West Conshohoken

    Google Scholar 

  • Dale VH, Efroymson RA, Kline KL (2011) The land use—climate change—energy nexus. Landsc Ecol 26:755–773

    Article  Google Scholar 

  • Day JW, Christian RR, Boesch DM, Yanez-Arancibia A, Morris J, Twilley RR, Naylor L, Schaffner L, Stevenson C (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuar Coasts 31:477–491

    Article  Google Scholar 

  • de Fraiture C, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts on green energy. Water Policy 10(1):67–81

    Article  Google Scholar 

  • Dexter AR (2004a) Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201–214

    Article  Google Scholar 

  • Dexter AR (2004b) Soil physical quality: part II. Friability, tillage, tilth and hard-setting. Geoderma 120:215–225

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zone and consequences for marine ecosystems. Science 321:926–929

    Article  PubMed  CAS  Google Scholar 

  • Dokuchaev VV (1883/1967) Russian chernozem. In: Collected writings, vol 3. Israel Progress in Science Transactions, Jerusalem

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210

    Article  Google Scholar 

  • Drechsel P, Kunze D, De Vries FP (2001) Soil nutrient depletion and population growth in Sub-Sarharan Africa: a Malthusian nexus? Popul Environ 22(4):411–423

    Article  Google Scholar 

  • Du M, Kawashima S, Yonemura S, Zhang X, Chen S (2004) Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob Planet Change 41:241–249

    Article  Google Scholar 

  • Dude OP (2007) Fire weather and land degradation. Climate and land degradation. Environ Sci Eng 223–351. doi:10.1007/978-3-540-724338-4_12

  • Dyer JA, Kulshreshtha SN, McConky BG, Desjardins RL (2010) An assessment of fossil fuel energy use and CO2 emission from farm field operations using a regional level crop and land use database for Canada. Energy 35:2261–2269

    Article  CAS  Google Scholar 

  • Edwards WM, Harrold LL (1970) Agricultural pollution of water bodies. Ohio J Sci 70(1):50

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P, Holdren J (1971) Impact of population growth. Science 171:1212

    Article  PubMed  CAS  Google Scholar 

  • Elmquist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Emmenegger MF, Pfister S, Koehler A, de Giovanetti L, Arena AP, Zah R (2011) Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int J Life Cycle Assess 16:869–877

    Article  Google Scholar 

  • Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2:66–74

    Article  Google Scholar 

  • Fantappiè M, L’Abate G, Costantini EAC (2011) The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphology 135:343–352

    Article  Google Scholar 

  • FAO (1997) State of the world’s forests. FAO, Rome

    Google Scholar 

  • FAO (2010) IAOSTATS, land and water division. FAO, Rome

    Google Scholar 

  • FAO/UNEP (1999) Terminology for integrated resources planning and management. FAO/United Nations Environment Program, Rome/Nairobi

    Google Scholar 

  • Feld CK, Martins da Silva P, Paulo Sousa J, de Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Römbke J, Sandin L, Bruce Jones K, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871

    Article  Google Scholar 

  • Fiala N (2008) Meeting the demand: an estimation of potential future greenhouse gas emissions from meat production. Ecol Econ 67:412–419

    Article  Google Scholar 

  • Fonte SJ, Six J (2010) Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system. Ecol Appl 20(4):1061–1073

    Article  PubMed  Google Scholar 

  • Ford CR, Hubbard RM, Vose JM (2010a) Quantifying structural and physiological controls on canopy transpiration of planted pine and hardwood stand species in the southern Appalachians. Ecohydrology 4:183–195

    Article  Google Scholar 

  • Ford CR, Laseter SH, Swank WT, Vose JM (2010b) Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol Appl 21(6):2049–2067

    Article  Google Scholar 

  • Fortuna A, Harwood R, Kizilkaya K, Paul EA (2003) Optimizing nutrient availability and potential carbon sequestration in an agroecosystem. Soil Biol Biochem 35:1005–1013

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in Southeastern United States. Soil Sci Soc Am J 74:347–357

    Article  CAS  Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gan Y, Liang C, Hamel C, Cutforth H, Wang H (2011a) Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron Sust Dev 31:643–656

    Article  Google Scholar 

  • Gan Y, Liang C, Wang X, McConkey B (2011b) Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crop Res 122:199–206

    Article  Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128

    Article  Google Scholar 

  • Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of conservation reserve program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci 108(33):13864–13869

    Article  PubMed  CAS  Google Scholar 

  • Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci 108(11):4307–4312

    Article  PubMed  CAS  Google Scholar 

  • Gomiera T, Paoletti MG, Pimentel D (2010) Biofuels: efficiency, ethics, and limits to human appropriation of ecosystem services. J Agric Environ Ethics 23:403–434

    Article  Google Scholar 

  • Gonzalez AD, Frostell B, Carlsson-Kanyama A (2011) Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food Policy 36:562–570

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Grant T, Beer T (2008) Life cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain. Aust J Exp Agric 48:375–381

    Article  CAS  Google Scholar 

  • Gruia R (2011) Study on energy resources integration and sustainability of the new modular agriculture pattern. Environ Eng Manage J 10(8):1213–1219

    Google Scholar 

  • Hammer RD (2010) A soil scientist’s perspective on ecosystem services and sustainability. Northwest Sci 84(3):302–306

    Article  Google Scholar 

  • Heberlein TA (1991) Changing attitudes and funding for wild-life —preserving the sport hunter. Wildl Soc Bull 19:528–534

    Google Scholar 

  • Holdren J, Ehrlich P (1974) Human population and global environment. Am Sci 62:282–292

    PubMed  CAS  Google Scholar 

  • Jackson TM, Hanjra MA, Khan S, Hafeez MM (2011) Building a climate resilient farm: a risk based approach for understanding water, energy and emissions in irrigated agriculture. Agr Syst 104:729–745

    Article  Google Scholar 

  • Jahn M, Sachs T, Mansfeldt T, Overesch M (2010) Global climate change and its impacts on the terrestrial Arctic carbon cycle with special regards to ecosystem components and the greenhouse-gas balance. J Plant Nutr Soil Sci 173:627–643

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw Hill, New York, 281 pp

    Google Scholar 

  • Kaffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  • Karlen DL, Birell SJ, Hess R (2011) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Tillage Res 115–116:47–55

    Article  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7(4):292–320

    Article  Google Scholar 

  • Keeling CD, Chin JSS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  CAS  Google Scholar 

  • Khakbazan M, Mohr RM, Derksen DA, Monreal MA, Grant CA, Zentner RP, Moulin AP, McLaren DL, Irvine RB, Nagy CN (2009) Effects of alternative management practices on the economics, energy and GHG emissions of a wheat-pea cropping system in the Canadian prairies. Soil Tillage Res 104:30–38

    Article  Google Scholar 

  • Khanna M, Crago CL, Black M (2011) Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus 1:233–247

    Article  PubMed  Google Scholar 

  • Kimmel K, Mander U (2010) Ecosystem services of peatlands: implications for restoration. Prog Phys Geogr 34(4):491–514

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, Morris JT (2009) Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Change Biol 15:1982–1989

    Article  Google Scholar 

  • Kitzes J, Wackernagel M, Loh J, Peller A, Goldfinger S, Cheng D, Tea K (2008) Shrink and share: humanity’s present and future ecological footprint. Philos Trans R Soc B 363:467–475

    Article  Google Scholar 

  • Koning N, Smaling E (2005) Environmental crisis or ‘lie of the land’? The debate on soil degradation in Africa. Land Use Policy 22:3–11

    Article  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein R, Ciais P, Cadule P, Khvorostyanoc D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci 108:14769–14774

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko AN, Robertson GP (2011) Whole-profile soil carbon stocks: the danger of assuming too much from analyses of too little. Soil Sci Soc Am J 75:235–240

    Article  CAS  Google Scholar 

  • Kroeger T, Casey F (2007) An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecol Econ 64:321–332

    Article  Google Scholar 

  • Kumar P (2011) Capacity constraints in operationalisation of payment for ecosystem services (PES) in India: evidence from land degradation. Land Degrad Dev 22:432–443

    Article  Google Scholar 

  • Lal R (2004a) Carbon emissions from farm operations. Environ Int 30:981–990

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Lal R (2010a) Enhancing eco-efficiency in agro-ecosystems through C sequestration. Crop Sci 50:S120–S131

    Article  CAS  Google Scholar 

  • Lal R (2010b) Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Secur 2:169–177

    Article  Google Scholar 

  • Lal R, Lorenz K, Huttl RF, Schneider BU, von Braun J (eds) (2012) Recarbonization of the biosphere: ecosystems and the global carbon cycle. Springer, Dordrecht/Holland, 559 pp

    Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P (2000) Ecological challenges for soil science. Soil Sci 165(1):73–86

    Article  CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JJ, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836. doi:10.1038/NGEO689

    Article  CAS  Google Scholar 

  • Leopold A (1949) A sand county almanac. Ballantine Books, New York, ISBN 0-345-34505-3, 158 pp

    Google Scholar 

  • Leslie HM (2011) A roadmap to nature’s benefits. Science 332:1264–1265

    Article  CAS  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604

    Article  Google Scholar 

  • Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nat Clim Change 1:105–109

    Article  Google Scholar 

  • Lucht W, Schaphoff S, Erbrecht T, Heyder U, Cramer W (2006) Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manage 1:6. doi:10.1186/1750-0680-1-6

    Article  CAS  Google Scholar 

  • Maczko K, Hidinger L (eds) (2008) Sustainable rangelands ecosystem goods and services. Sustainable Rangelands Roundtable Monograph No 3

    Google Scholar 

  • Marks E, Aflakpui KS, Nkem J, Poch RM, Khouma M, Kokou K, Sagoe R, Sebastià M-T (2009) Conservation of soil organic carbon, biodiversity, and the provision of other ecosystem services along climatic gradients in West Africa. Biogeosciences 6:1825–1838

    Article  CAS  Google Scholar 

  • Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89

    Article  Google Scholar 

  • McCauley DJ (2006) Selling out on nature. Nature 443:27–28

    Article  PubMed  CAS  Google Scholar 

  • McCune NM, González YR, Alcántara EA, Martínez OF, Fundora CO, Arzola NC, Cairo PC, D’Haese M, DeNeve S, Hernández FG (2011) Global questions, local answers: soil management and sustainable intensification in diverse socioeconomic contexts of Cuba. J Sustain Agric 35(6):650–670

    Article  Google Scholar 

  • Mchunu CN, Lorentz S, Jewitt G, Manson A, Chaplot V (2011) No-till impact on soil and soil organic carbon erosion under crop residue scarcity in Africa. Soil Sci Soc Am J 75:1503–1512

    Article  CAS  Google Scholar 

  • MEA (2005) Ecosystem and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Gage CL (2011) Potential adverse environmental impacts of greenhouse gas mitigation strategies. In: Princiotta FT (ed) Global climate change – the technology challenge, advances in global change research 38. Springer, Dordrecht/Holland, 420 pp

    Google Scholar 

  • Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philos Trans R Soc B 365:2013–2018

    Article  Google Scholar 

  • Mooney HA, Ehrlich PR (1997) Ecosystem services – a fragmented history. In: Daily GC (ed) Nature services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Mooney H, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R, Yahara T (2009) Biodiversity, climate change, and ecosystem services. Curr Opin Environ Sustain 1:46–54

    Article  Google Scholar 

  • Moran XAG, Urritia AL, Calvo-Diaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137–1144

    Article  Google Scholar 

  • Morimoto Y (2011) Biodiversity and ecosystem services in urban areas for smart adaptation to climate change: “Do you Kyoto”? Landsc Ecol Eng 7:9–16

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitude from 1981–1991. Nature 286:698–792

    Article  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–79

    Article  Google Scholar 

  • Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One 5(12):e14327. doi:10.1371/journal.pone.0014327

    Article  PubMed  CAS  Google Scholar 

  • Nogueira LAH (2011) Does biodiesel make sense? Energy 36:3659–3666

    Article  Google Scholar 

  • O’Farrell PJ, Anderson PML (2010) Sustainable multifunctional landscapes: a review to implementation. Curr Opin Environ Sustain 2:59–65

    Article  Google Scholar 

  • Oldeman RL (1994) The extent of soil degradation. In: Greenland DJ, Szaboles I (eds) Soil resilience and sustainable land use. CAB International, Wallingford

    Google Scholar 

  • Omer A, Pascual U, Russell N (2010) A theoretical model of agrobiodiversity as a supporting service for sustainable agricultural intensification. Ecol Econ 69:1926–1933

    Article  Google Scholar 

  • Page KL, Dalal RC (2011) Contribution of natural and drained wetland systems to carbon stocks, CO2, N2O, and CH4 fluxes: an Australian perspective. Soil Res 49:377–388

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Systamics 37:637–669

    Article  Google Scholar 

  • Perrings C, Naeem S, Ahrestani FS, Bunker DE, Burkill P, Canziani G, Elmquist T, Fuhrman JA, Jaksic FM, Kawabata Z, Kinzig A, Mace GM, Mooney H, Prieur-Richard AH, Tschirhart J, Weisser W (2011) Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Front Ecol Environ 9(9):512–520

    Article  Google Scholar 

  • Peterson GA, Westfall DG (2004) Managing precipitation use in sustainable dryland agroecosystems. Ann Appl Biol 144:127–138

    Article  Google Scholar 

  • Petersen SO, Mutegi JK, Hansen EM, Munkholm LJ (2011) Tillage effects on N2O emissions as influenced by winter cover crop. Soil Biol Biochem 43:1509–1517

    Article  CAS  Google Scholar 

  • Peyton RB (2000) Wildlife management: cropping to manage or managing to crop? Wildl Soc Bull 28(4):774–779

    Google Scholar 

  • Polasky S, Nelson E, Pennington D, Johnson KA (2010) The impact of land-use change in ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ Resour Econ 48:219–242

    Article  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geographical Res Lett 35: L03618 doi:10.1029/2007GL031745, 5 pp

    Article  Google Scholar 

  • Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017. doi:10.1088/1748-9326/6/3/034017

    Article  Google Scholar 

  • Porter J, Costanza R, Sandhu H, Sigsgaard L, Wratten S (2009) The value of producing food, energy and ecosystem services within and agro-ecosystem. Ambio 38(4):186–193

    Article  PubMed  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc 365:2959–2971

    Article  Google Scholar 

  • Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW, Whitmore AP, Hirsch PR, Goulding KWT (2011) Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36:S72–S87

    Article  Google Scholar 

  • Raghu S, Spencer JL, Davis AS, Wiedenmann RN (2011) Ecological considerations in the sustainable development of terrestrial biofuel crops. Curr Opin Environ Sustain 3:15–23

    Article  Google Scholar 

  • Robinson DA, Lebron I, Vereecken H (2009) On the definition of natural capital of soils: a framework for description, evaluation, and monitoring. SSSAJ 73(6):1904–1911

    Article  CAS  Google Scholar 

  • Röver M, Heinemeyer O, Munch JC, Kaiser E-A (1999) Spatial heterogeneity within the plough layer: high variability of N2O emission rates. Soil Biol Biochem 31:167–173

    Article  Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  PubMed  CAS  Google Scholar 

  • Sanz Requena JK, Guimaraes AC, Alpera SQ, Gangas ER, Hernandez-Navarro S, Navas Garcia LM, Martin-Gil J, Fresneda Cuesta H (2011) Life cycle assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process Technol 92:190–199

    Article  CAS  Google Scholar 

  • Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus 63:165–180. doi:10.1111/j.1600+0889.2011.00527.x

    Article  CAS  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euckirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venecsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714

    Article  Google Scholar 

  • Schwilch G, Bestelmeyer B, Bunning S, Critchley W, Herrick J, Kellner K, Liniger HP, Nachtergaaele F, Ritsema CJ, Schuster B, Tabo R, Van Lynden G, Winslow M (2011) Experiences in monitoring and assessment of sustainable land management. Land Degrad Dev 22:214–225

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, Shen Q, Zou J, Guo S (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Change Biol 17:2196–2210

    Article  Google Scholar 

  • Smith P, Martina D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:780–813

    Google Scholar 

  • Soimakallio S, Koponen K (2011) How to ensure greenhouse gas emission reductions by increasing the use of biofuels? – Suitability of the European Union sustainability criteria. Biomass Bioenergy 35:3504–3513

    Article  Google Scholar 

  • SRR (2008) Sustainable rangelands roundtable. Colorado State University, SRR Monograph #3, Fort Collins, CO

    Google Scholar 

  • Stallman HR (2011) Ecosystem services in agriculture: determining suitability for provision by collective management. Ecol Econ 71:131–139

    Article  Google Scholar 

  • Stone KC, Hunt PG, Cantrell KB, Ro KS (2010) The potential impacts of biomass feedstock production on water resource availability. Bioresour Technol 101:2014–2025

    Article  PubMed  CAS  Google Scholar 

  • Stork N (2010) Re-assessing current extinction rates. Biodivers Conserv 19:357–371

    Article  Google Scholar 

  • Suter G (1993) Ecological risk assessment. Lewis Publishers, Ann Arbor

    Google Scholar 

  • Sutton PC, Anderson SJ, Tuttle BT, Morse L (2012) The real wealth of nations: mapping and monetizing the human ecological footprint. Ecol Indic 16:11–22

    Article  Google Scholar 

  • Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64:245–252

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. doi:1029/2008GB003327

    Article  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food. Energy, and environment trilemma. Science 325:270

    Article  PubMed  CAS  Google Scholar 

  • Timilsina GR, Shrestha A (2011) How much hope should we have for biofuels. Energy 36:2055–2069

    Article  Google Scholar 

  • Traill LW, Lim MLM, Sodhi NS, Bradshaw CJA (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. J Anim Ecol 79:937–947

    Article  PubMed  Google Scholar 

  • United Nations (1987) Report of the world commission on environment development. U.N. General Assembly Resolution A/RES/42/1887, New York, NY

    Google Scholar 

  • van Rooyen AF (1998) Combating desertification in the southern Kalahari: connecting science with community action in South Africa. J Arid Environ 39:285–297

    Article  Google Scholar 

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365:2019–2024

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg P, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu F, Andersen MN, Jensen DR (2010) Carbon retention in the soil-plant system under different irrigation regimes. Agric Water Manage 98:419–424

    Article  Google Scholar 

  • Watanabe MDB, Ortega E (2011) Ecosystem services and biogeochemical cycles on a global scale: valuation of water, carbon and nitrogen processes. Environ Sci Policy 14:594–604

    Article  CAS  Google Scholar 

  • Weisz PB (2004) Basic choices and constraints on long-term energy supplies. Phys Today 57(7):47

    Article  Google Scholar 

  • West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. Crop yields on agricultural land. Proc Natl Acad Sci 107(46):1945–1948

    Article  Google Scholar 

  • Yi S, Woo M-K, Arain MA (2007) Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys Res Lett 34:L16504. doi:10.1029/2007GL030550 2007

    Article  Google Scholar 

  • Zanuttigh B (2011) Coastal flood protection: what perspective in a changing climate. The THESEUS approach. Environ Sci Policy 14:845–863

    Article  Google Scholar 

  • Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, Eugster W (2010) Management and climate impacts on net CO2 fluxes and carbon budgets on three grasslands along an elevational gradient in Switzerland. Agr Forest Meteorol 150:519–530

    Article  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260

    Article  Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett L20502. doi:10.1029/2006GL027484

  • Zuckerman B (1992) Don’t omit population from energy equation. Phys Today 45(7):14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lal, R. (2013). Soils and Ecosystem Services. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_2

Download citation

Publish with us

Policies and ethics