Skip to main content

Abstract

Midkine, a heparin-binding growth factor, promotes the growth, survival, and migration of various cell populations, and it is over-expressed in many malignant human tumors. Midkine expression is generally increased in colon carcinomas compared to normal colon tissue. Additionally, colon adenomas with medium-to severe-dysplasia exhibit increased midkine expression. Therefore, midkine is expressed during the early stages of colon carcinogenesis and is likely to be involved in the oncogenic process, presumably by promoting tumor cell growth and survival. In the advanced tumor stages, midkine is expected to contribute to tumor progression by promoting tumor angiogenesis. A truncated form of midkine mRNA, which lacks the sequence encoding the N-terminal domain, is expressed in colon cancers in a cancer-specific manner. Detection of this sequence might help to detect micro metastases. Furthermore, the truncated midkine mRNA appears to contribute to colon carcinogenesis because a genetic variant favoring its formation is more frequently found in patients with colon carcinoma compared to unaffected controls. Finally, midkine inhibitors are expected to be valuable in colon cancer treatment; antisense oligo-DNA has been proven to suppress cancer growth in experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2011) Colorectal cancer facts and figures 2011–2013. American Cancer Society, Atlanta, pp 1–32

    Google Scholar 

  2. Rajkumar T (2001) Growth factors and growth factors receptors in cancer. Curr Sci 81:537–541

    Google Scholar 

  3. Sherman L, Stocker KM, Morrison R et al (1993) bFGF acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118:1313–1326

    PubMed  CAS  Google Scholar 

  4. Wong S, Winchell LF, McCune BK et al (1989) The TGF-alpha precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56:495–506

    Article  PubMed  CAS  Google Scholar 

  5. Muramatsu T (2002) Midkine an pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  6. Muramatsu T (1993) Midkine, the product of a retinoic acid responsive gene, and pleitrophin constitute a new protein family regulating growth and differentiation. Int J Dev Biol 37:183–188

    PubMed  CAS  Google Scholar 

  7. Kadomatsu K, Muramatsu T (2004) Midkine and pleitrophin in neural development and cancer. Cancer Lett 204:127–143

    Article  PubMed  CAS  Google Scholar 

  8. Kadomatsu K, Tomomura M, Muratmatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  PubMed  CAS  Google Scholar 

  9. Matsubara S, Tomomura M, Kadomatsu K et al (1990) Structure of a retinoic acid-responsive gene, MK, which is transiently activated during the differentiation of embryonal carcinoma cells and the mid-gestation period of mouse embryogenesis. J Biol Chem 265:9441–9443

    PubMed  CAS  Google Scholar 

  10. Deuel TF, Zhang N, Yeh HJ et al (2002) Pleitrophin. A cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–167

    Article  PubMed  CAS  Google Scholar 

  11. Rauvala H, Peng HB (1997) HB-GAM and heparin type glycans in the development and placiticity of neuron-target contacts. Prog Neurobiol 52:127–144

    Article  PubMed  CAS  Google Scholar 

  12. Qi M, Ikematsu S, Maeda N et al (2001) Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3 kinase. J Biol Chem 276:15868–15875

    PubMed  CAS  Google Scholar 

  13. Choudhuri R, Zhang HT, Donnini S et al (1997) An angiogenic role for the neurokines midkine and pleitrophin in tumorigenesis. Cancer Res 57:1814–1819

    PubMed  CAS  Google Scholar 

  14. Takada T, Toriyama K, Muramatsu H et al (1997) Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis. J Biochem 22:453–458

    Article  Google Scholar 

  15. Meng K, Rodriguez-Pena A, Dimitrov T et al (2000) Pleitrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 97:2603–2608

    Article  PubMed  CAS  Google Scholar 

  16. Ota K, Fujimori H, Ueda M et al (2008) Midkine as a prognostic biomarker in oral squamous cell carcinoma. Br J Cancer 99:655–662

    Article  PubMed  CAS  Google Scholar 

  17. Ibusuki M, Fujimori H, Yamamoto Y et al (2009) Midkine in plasma as a novel breast cancer marker. Cancer Sci 100:1735–1739

    Article  PubMed  CAS  Google Scholar 

  18. Kemık O, Sumer A, Kemık AS et al (2010) The relationship among acute-phase response proteins, cytokines, and hormones in cachectic patients with colon cancer. World J Surg Oncol 8:85

    Article  PubMed  Google Scholar 

  19. Kemik O, Kemık AS, Begenık H et al (2011) The relationship among acute-phase response proteins, cytokines, and hormones in patients with cachectic gastrointestinal cancer types. Hum Exp Toxicol 1–9. doi:10.1177/0960327111417271

  20. Ye C, Qi M, Fan QW et al (1999) Expression of midkine in the early stage of carcinogenesis in human colorectal cancer. Br J Cancer 79:179–184

    Article  PubMed  CAS  Google Scholar 

  21. Kato M, Shinozawa T, Kato S et al (2000) Increased midkine expression in hepatocellular carcinoma. Arch Pathol Lab Med 124:848–852

    PubMed  CAS  Google Scholar 

  22. Kato M, Shinozawa T, Kato S et al (2000) Increased midkine expression in intrahepatic cholangiocarcinoma: immunohistochemical and in situ hybridization analyses. Liver 20:216–221

    Article  PubMed  CAS  Google Scholar 

  23. Garver RI, Chan CS, Milner PG (1993) Reciprocal expression of pleitrophin and midkine in normal versus malignant lung tissues. Am J Respir Cell Mol Biol 9:463–466

    PubMed  CAS  Google Scholar 

  24. Kato M, Maeta H, Kato S et al (2000) Immunohistochemical and in situ hybridization analyses of midkine expression in thyroid papillary carcinoma. Mod Pathol 13:1060–1065

    Article  PubMed  CAS  Google Scholar 

  25. O’Brien T, Cranston D, Fuggle S et al (1996) The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res 56:2515–2518

    PubMed  Google Scholar 

  26. Monn HS, Park WI, Sung SH et al (2003) Immunohistochemical and quantitative competitive PCR analyses of midkine and pleitrophin expression in cervical cancer. Gynecol Oncol 88:289–297

    Article  Google Scholar 

  27. Nakanishi T, Kadomatsu K, Okamoto T et al (1997) Expression of midkine and pleitrophin in ovarian tumors. Obstet Gynecol 90:285–290

    Article  PubMed  CAS  Google Scholar 

  28. Konishi N, Nakamura M, Nakaoka S et al (1999) Immunohistochemical analysis of midkine expression in human prostate carcinoma. Oncology 57:253–257

    Article  PubMed  CAS  Google Scholar 

  29. Kadomatsu K, Hagihara M, Akher S et al (1997) Midkine induces the transformation of NIH3T3 cells. Br J Cancer 75:354–359

    Article  PubMed  CAS  Google Scholar 

  30. Schulte AM, Lai S, Kurtz A et al (1996) Human prophoblast and choriocarcinoma expression of the growth factor pleitrophin attributable to germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci 93:14759–14764

    Article  PubMed  CAS  Google Scholar 

  31. Chauan AK, Li Y, Deuel TF (1993) Pleitrophin transforms NIH3T3 cells and induces tumors in nude mice. Proc Natl Acad Sci USA 90:670–682

    Google Scholar 

  32. Aridome K, Tsutsui J, Takao S et al (1995) Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res 86:655–661

    Article  PubMed  CAS  Google Scholar 

  33. Shibata Y, Muramatsu T, Hirai H et al (2002) Nuclear targeting by the growth factor midkine. Mol Cell Biol 22:6788–6796

    Article  PubMed  CAS  Google Scholar 

  34. Ikematsu S, Yano A, Aridome K et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83:701–706

    Article  PubMed  CAS  Google Scholar 

  35. Miyashiro I, Kaname T, Eisei S et al (1997) Midkine expression in human breast cancer. Breast Cancer Res Treat 43:1–6

    Article  PubMed  CAS  Google Scholar 

  36. Miyashiro I, Kaname T, Nakayama T et al (1996) Expression of truncated midkine in human colorectal cancer. Cancer Lett 106:287–291

    Article  PubMed  CAS  Google Scholar 

  37. Aridome K, Takao S, Kaname T et al (1998) Truncated midkine as a marker of diagnosis and detection of nodal metastases in gastrointestinal carcinoma. Br J Cancer 78:472–477

    Article  PubMed  CAS  Google Scholar 

  38. Kaname T, Kadomatsu K, Aridome K et al (1996) The expression of truncated MK in human tumors. Biochem Biophys Res Commun 219:256–260

    Article  PubMed  CAS  Google Scholar 

  39. Hayashi N, Arakawa H, Nagase N et al (1994) Genetic diagnosis identifies occult node metastasis undetectable by the histopathological method. Cancer Res 54:3853–3856

    PubMed  CAS  Google Scholar 

  40. Hayashi N, Ito I, Yanagisawa A et al (1995) Genetic diagnosis of lymph node metastasis in colorectal cancer. Lancet 345:1257–1260

    Article  PubMed  CAS  Google Scholar 

  41. Mori M, Mimori K, Inoue I et al (1995) Detection of cancer micrometastasis in lymph node by reverse transcriptase-polymerase chain reaction. Cancer Res 55:3417–3420

    PubMed  CAS  Google Scholar 

  42. Ahmed KM, Shitara Y, Kuwano H et al (2000) Genetic variations of the midkine gene in human sporadic colorectal and gastric cancers. Int J Mol Med 6:281–287

    PubMed  CAS  Google Scholar 

  43. Ahmed KM, Shitara Y, Takenoshita S et al (2002) Associations of an intronic polymorphism in the midkine gene with human sporadic colorectal cancer. Cancer Lett 180:159–163

    Article  PubMed  CAS  Google Scholar 

  44. Nobata S, Mogi H, Shinozawa T (2004) Exon skipping of midkine pre-mRNA is enhanced by intronic polymorphism in a colon cancer cell line. Cancer Lett 207:89–93

    Article  PubMed  CAS  Google Scholar 

  45. Paul S, Mitsumoto T, Asano Y et al (2001) Detection of truncated midkine in Wilm’s tumor by a monoclonal antibody against human recombinant truncated midkine. Cancer Lett 163:245–251

    Article  PubMed  CAS  Google Scholar 

  46. Nobata S, Shinozawa T, Sakanishi A (2005) Truncated midkine induces transformation of cultured cells and short latency of tumorigenesis in nude mice. Cancer Lett 219:83–89

    Article  PubMed  CAS  Google Scholar 

  47. Kojima S, Inui T, Kimura T et al (1995) Synthetic peptides derived from midkine enhances plasminogen activator in bovine aortic endothelial cells. Biochem Biophys Res Commun 206:468–473

    Article  PubMed  CAS  Google Scholar 

  48. Matsuda Y, Talukder AH, Ishihara M et al (1996) Limited proteolysis by chymotrypsin of midkine and inhibition by heparin binding. Biochem Biophys Res Commun 228:176–181

    Article  PubMed  CAS  Google Scholar 

  49. Takei Y, Kadomatsu K, Matsuo S et al (2001) Antisense oligodeoxynucleotide targeted to midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res 61:8486–8491

    PubMed  CAS  Google Scholar 

  50. Takei Y, Kadomatsu K, Yuaso K et al (2005) Morpholino antisense oligomer targeting human midkine: its application of cancer therapy. Int J Cancer 114:490–497

    Article  PubMed  CAS  Google Scholar 

  51. Salama RH, Muramatsu H, Zou K et al (2001) Midkine binds to 37-kDa laminin binding protein precursor, leading to nuclear transport of the complex. Exp Cell Res 270:13–20

    Article  PubMed  CAS  Google Scholar 

  52. Muramatsu T (2010) Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Sci 86:410–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Sirin Demir (Yüzüncü Yıl University, Department of Foreign Languages) for many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Kemik .

Editor information

Editors and Affiliations

Additional information

Funding: Funding was not required to complete this work.

Conflict of interest: The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kemik, Ö., Kemik, A.S., Dülger, A.C. (2012). Colon Cancer and Midkine. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_26

Download citation

Publish with us

Policies and ethics