Skip to main content

Did Redox Conditions Trigger Test Templates in Proterozoic Foraminifera?

  • Chapter
  • First Online:
Book cover Anoxia

Abstract

The genetically controlled formation of shells (“tests”) in the protistan first-rank Foraminifera [Rhizaria] offers a considerable advantage in evolutionary and phylogenetic studies on their development and diversification. Fossilized tests reveal the evolutionary patterns for some thousand genera, from the Cambrian to the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eucaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Altenbach AV, Unsöld G, Walger E (1987) The hydrodynamic environment of Saccorhiza ramosa (Brady). Meyniana 40:119–132

    Google Scholar 

  • Altenbach AV, Heeger T, Linke P, Spindler M, Thies A (1993) Miliolinella subrotunda (Montagu), a miliolid foraminifer building large detritic tubes for a temporary epibenthic life-style. Mar Micropaleontol 20:293–301

    Google Scholar 

  • Anbar AD (2008) Elements and evolution. Science 322:1481–1483

    PubMed  CAS  Google Scholar 

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    PubMed  CAS  Google Scholar 

  • Anderson OR, Lee JJ (1991) Symbiosis in foraminifera. In: Lee JJ, Anderson OR (eds.) Biology of foraminifera. Academic, London, pp 157–220

    Google Scholar 

  • Austin HA, Austin WE, Paterson DM (2005) Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol 57:68–73

    Google Scholar 

  • Bass D, Moreira D, Lopez-Garcia P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161

    PubMed  CAS  Google Scholar 

  • Bass D, Chao EEY, Nikolaev S, Yabuki A, Ishida KI, Berney C, Pakzad U, Wylezich C, Cavalier-Smith T (2009) Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 160:75–109

    PubMed  Google Scholar 

  • Bender H (1995) Test structure and classification in agglutinated foraminifera. In: Kaminski MA, Geroch S, Gasinski MA (eds.) Proceedings of the fourth international workshop on agglutinated foraminifera. Grzybowski Foundation, Krakow, pp 27–70

    Google Scholar 

  • Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299:861

    PubMed  CAS  Google Scholar 

  • Bernhard JM, Bowser SS (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Sci Rev 46:149–165

    CAS  Google Scholar 

  • Bernhard JM, Bowser SS (2008) Peroxisome proliferation in foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure? J Eukaryot Microbiol 55:135–144

    PubMed  CAS  Google Scholar 

  • Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr 48:813–828

    Google Scholar 

  • Bernhard JM, Habura A, Bowser SS (2006) An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res Biogeosci 111:G03002. doi:10.1029/2005JG000158

    Google Scholar 

  • Bernhard JM, Mollo-Christensen E, Eisenkolb N, Starczak VR (2009a) Tolerance of allogromiid foraminifera to severely elevated carbon dioxide concentrations: implications to future ecosystem functioning and paleoceanographic interpretations. Global Planet Change 65:107–114

    Google Scholar 

  • Bernhard JM, Goldstein ST, Bowser SS (2009b) An ectobiont-bearing foraminiferan, Bolivina pacifica, that inhabits microxic pore waters: cell-biological and paleoceanographic insights. Environ Microbiol. doi:10.1111/j.1462-2920.2009.02073.x

    Google Scholar 

  • Bertram MA, Cowen JP (1997) Morphological and compositional evidence for biotic precipitation of marine barite. J Mar Res 55:577–593

    CAS  Google Scholar 

  • Bowser SS, DeLaca TE (1985) Rapid intracellular motility and dynamic membrane events in an Antarctic foraminifer. Cell Biol Int Rep 9:901–910

    PubMed  CAS  Google Scholar 

  • Bowser SS, Travis JL (2002) Reticulopodia: structural and behavioral basis for the suprageneric placement of granuloreticulosan protists. J Foraminifer Res 32:440–447

    Google Scholar 

  • Bowser SS, Alexander SP, Stockton WL, DeLaca TE (1992) Extracellular matrix augments mechanical properties of pseudopodia in the carnivorous foraminiferan Astrammina rara: role in prey capture. J Protozool 39:724–732

    Google Scholar 

  • Bowser SS, Gooday AJ, Alexander SP, Bernhard JM (1995) Larger agglutinated foraminifera of McMurdo Sound, Antarctica: are Astrammina rara and Notodendrodes antarctikos allogromiids incognito? Mar Micropaleontol 26:75–88

    Google Scholar 

  • Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz HN (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518

    Google Scholar 

  • Butterfield NJ (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7

    PubMed  CAS  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Pl Sci 33:136

    Google Scholar 

  • Catling DC, Glein CR, Zahnle KJ, Mckay CP (2005) Why O2 is required by complex life on habitable planets and the concept of planetary “Oxygenation Time”. Astrobiology 5:415–438

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Cedhagen T (1988) Position in the sediment and feeding of Astrorhiza limicola Sandahl, 1857 (Foraminiferida). Sarsia 73:43–47

    Google Scholar 

  • Cedhagen T (1991) Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionella labradorica. Ophelia 33:17–30

    Google Scholar 

  • Cedhagen T (1993) Taxonomy and biology of Pelosina arborescens with comparative notes on Astrorhiza limicola (Foraminiferida). Ophelia 37:143–162

    Google Scholar 

  • Cedhagen T, Frimanson H (2002) Temperature dependence of pseudopodial organelle transport in seven species of foraminifera and its functional consequences. J Foraminifer Res 32:434–439

    Google Scholar 

  • Cedhagen T, Tendal OS (1989) Evidence of test detachment in Astrorhiza limicola, and two consequential synonyms: Amoeba gigantea and Megaamoebomyxa argillobia (Foraminiferida). Sarsia 74:195–200

    Google Scholar 

  • Correia MJ, Lee JJ (2002) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32:27–37

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30. doi:10.1186/1741-7007-8-30

    PubMed  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci 99:8324–8329

    PubMed  CAS  Google Scholar 

  • DeLaca TE (1982) Use of dissolved amino-acids by the foraminifer Notodendrodes antarcticos. Am Zool 22:683–690

    CAS  Google Scholar 

  • DeLaca TE, Karl DM, Lipps JH (1981) Direct use of dissolved organic carbon by agglutinated benthic foraminifera. Nature 289:287–289

    CAS  Google Scholar 

  • DeLaca TE, Bernhard JM, Reilly AA, Bowser SS (2002) Notodendrodes hyalinosphaira (sp. nov.): structure and autecology of an allogromiid-like agglutinated foraminifer. J Foraminifer Res 32:177–187

    Google Scholar 

  • Dong L, Xiao S, Shen B, Zhou C (2008) Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. J Geol Soc UK 165:367–378

    Google Scholar 

  • Doolittle RF (1995) The origins and evolution of eukaryotic proteins. Philos T Roy Soc B 349:235–240

    CAS  Google Scholar 

  • Edgcomb V, Orsi W, Leslin C, Epstein SS, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the Eastern Mediterranean Sea. Extremophiles 13:151–167

    PubMed  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos T Roy Soc B 361:1055–1067

    CAS  Google Scholar 

  • Embley M, van der Giezen M, Horner DS, Dyal PL, Foster P (2003) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos T Roy Soc B 358:191–203

    CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E (2010) Nitrate-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    PubMed  CAS  Google Scholar 

  • Fahrni JF, Pawlowski J, Richardson S, Debenay J-P, Zanetti L (1997) Actin suggests Miliammina fusca (Brady) is related to porcellaneous rather than to agglutinated foraminifera. Micropaleontology 43:211–214

    Google Scholar 

  • Falkowski PG, Godfrey LV (2009) Electrons, life and the evolution of Earth’ oxygen cycle. Philos T Roy Soc B 363:2705–2716

    Google Scholar 

  • Fenchel T, Finlay B (2008) Oxygen and the spatial structure of microbial communities. Biol Rev 83:553–569

    PubMed  Google Scholar 

  • Fenchel T, Finlay BJ (2009) The diversity of microbes: resurgence of the phenotype. Philos T Roy Soc B 361:1965–1973

    Google Scholar 

  • Finlay BJ, Span ASW, Harman JMP (1983) Nitrate respiration in primitive eukaryotes. Nature 303:333–336

    CAS  Google Scholar 

  • Flakowski J, Bolivar I, Fahrni J, Pawlowski J (2005) Actin phylogeny of foraminifera. J Foraminifer Res 35:93–102

    Google Scholar 

  • Flakowski J, Bolivar I, Fahrni J, Pawlowski J (2006) Tempo and mode of spliceosomal intron evolution in actin of foraminifera. J Mol Evol 63:30–41

    PubMed  CAS  Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    PubMed  CAS  Google Scholar 

  • Frevert T (1984) Can the redox conditions in natural waters be predicted by a single parameter? Aquat Sci 46:270–290

    Google Scholar 

  • Gaidos E, Diubuc T, Dunford M, McAndrew P, Padilla-Gamino J, Studer B, Weersing K, Stanley S (2007) The Precambrian emergence of animal life: a geobiological perspective. Geobiology 5:351–373

    CAS  Google Scholar 

  • Gaucher C, Sprechmann P (1999) Upper Vendian skeletal fauna of the Arroyo del Soldado Group, Uruguay. Beringeria 23:55–91

    Google Scholar 

  • Gaucher C, Frimmel HE, Germs GJB (2005) Organic-walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geol Mag 142:539–559

    Google Scholar 

  • Glud RN, Thamdrup B, Stahl H, Wenzhoefer F, Glud A, Nomaki H, Oguri K, Revsbech NP, Kitazato H (2009) Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan). Limnol Oceanogr 54:723–734

    CAS  Google Scholar 

  • Goldstein SL (1999) Foraminifera: a biological overview. In: Sen Gupta BK (ed.) Modern Foraminifera. Kluwer Academic, Dordrecht, pp 37–55

    Google Scholar 

  • Goldstein ST, Corliss BH (1994) Deposit feeding in selected deep-sea and shallow-water benthic foraminifera. Deep-Sea Res 41:229–241

    Google Scholar 

  • Goldstein ST, Moodley L (1993) Gametogenesis and the life-cycle of the foraminifer Ammonia ­beccarii (Linne) forma Tepida (Cushman). J Foraminifer Res 23:213–220

    Google Scholar 

  • Gooday AJ (1986) Meiofaunal foraminiferans from the bathyal Porcupine Seabight (north-east Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res 33:1345–1373

    Google Scholar 

  • Gooday AJ (2002) Biological response to seasonally varying fluxes of organic matter to the sea floor: a review. J Oceanogr 58:305–322

    CAS  Google Scholar 

  • Gooday AJ, Nott AJ (1982) Intracellular barite crystals in two xenophyophores, Aschemonella ramuliformis and Galatheammina sp. (Protozoa, Rhiziopoda) with comments on the taxonomy of A. ramuliformis. J Mar Biol Assoc UK 62:595–605

    CAS  Google Scholar 

  • Gooday AJ, Tendal OS (1988) New xenophyophores (Protista) from the bathyal and abyssal north-east Atlantic Ocean. J Nat Hist 22:413–434

    Google Scholar 

  • Gooday AJ, Todo Y, Uematsu K, Kitazato H (2008a) New organic-walled foraminifera (Protista) from the ocean’s deepest point, the Challenger Deep (Western Pacific Ocean). Zool J Linn Soc 153:399–423

    Google Scholar 

  • Gooday AJ, Kamenskaya OE, Kitazato H (2008b) The enigmatic, deep-sea, organic-walled genera Chitinosiphon, Nodellum and Resigella (Protista, Foraminifera): a taxonomic re-evaluation. Syst Biodivers 6:385–404

    Google Scholar 

  • Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:80–86

    PubMed  CAS  Google Scholar 

  • Gross O (2002) Sediment interactions of foraminifera: implications for food degradation and bioturbation processes. J Foraminifer Res 32:414–424

    Google Scholar 

  • Grundl T (1994) A review of the current understanding of redox capacity in natural, disequilibrium systems. Chemosphere 28:613–626

    CAS  Google Scholar 

  • Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580

    CAS  Google Scholar 

  • Habura A, Rosen DR, Bowser SS (2004) Predicted secondary structure of the foraminiferal SSU 3 ‘major domain reveals a molecular synapomorphy for granuloreticulosean protists. J Eukaryot Microbiol 51:464–471

    PubMed  CAS  Google Scholar 

  • Habura A, Goldstein ST, Parfrey LW, Bowser SS (2006) Phylogeny and ultrastructure of Miliammina fusca: evidence for secondary loss of calcification in a miliolid foraminifer. J Eukaryot Microbiol 53:204–210

    PubMed  CAS  Google Scholar 

  • Habura A, Goldstein ST, Broderick S, Bowser SS (2008) A bush, not a tree: the extraordinary diversity of cold-water basal foraminiferans extends to warm-water environments. Limnol Oceanogr 53:1339–1351

    Google Scholar 

  • Hannah F, Rogerson A, Laybournparry J (1994) Respiration rates and biovolumes of common ­benthic foraminifera (Protozoa). J Mar Biol Assoc UK 74:301–312

    Google Scholar 

  • Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution. doi:10.1111/j.1558-5646.2010.00959.x

    Google Scholar 

  • Heinz P, Geslin E, Hemleben C (2005) Laboratory observations of benthic foraminiferal cysts. Mar Biol Res 1:149–159

    Google Scholar 

  • Høgslund S (2008) Nitrate storage as an adaptation to benthic life. Ph.D. thesis, Department of Biological Science, University of Aarhus, Denmark

    Google Scholar 

  • Høgslund S, Revsbech N, Cedhagen T, Nielsen L, Gallardo V (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J Exp Mar Biol Ecol 359:85–91

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos T Roy Soc B 361:903–915

    CAS  Google Scholar 

  • Hopwood JD, Mann S, Gooday AJ (1997) The crystallography and possible origin of barium sulphate in deep sea rhizopod protists (Xenophyophorea). J Mar Biol Assoc UK 77:969–987

    CAS  Google Scholar 

  • Jahn TL, Rinaldi RA (1959) Protoplasmic movement in the foraminiferan, Allogromia laticollaris, and a theory of its mechanism. Biol Bull 117:100–118

    Google Scholar 

  • Jepps MW (1942) Studies on Polystomella Lamarck (Foraminifera). J Mar Biol Assoc UK 25:607–666

    Google Scholar 

  • Jiang S-Y, Pi D-H, Heubeck C, Frimmel H, Liu Y-P, Deng H-L, Ling H-F, Yang J-H (2009) Early Cambrian ocean anoxia in South China. Nature 459:E5–E6

    PubMed  CAS  Google Scholar 

  • Katz ME, Finkel ZV, Grzebyk D, Knoll AH, Falkowski PG (2004) Evolutionary trajectories and ­biogeochemical impacts of marine eucaryotic phytoplankton. Ann Rev Ecol Syst 35:523–556

    Google Scholar 

  • King K (1977) Amino acid survey of recent calcareous and siliceous deep-sea microfossils. Micropaleontology 23:180–193

    CAS  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the curse of microbial evolution. Palaeogeogr Palaeoecol 219:53–69

    Google Scholar 

  • Knauth LP, Kennedy MJ (2009) The late Precambrian greening of the earth. Nature. doi:10.1038/nature08213

    Google Scholar 

  • Koho KA, Pina-Ochoa E, Geslin E, Risgaard-Petersen N (2011) Vertical migration, nitrate uptake and denitrification: survival mechanisms of foraminifers (Globobulimina turgida) under low ­oxygen conditions. FEMS Microbiol Ecol 75:273–283

    PubMed  CAS  Google Scholar 

  • Komiya T, Hirata T, Kitajima K, Yamamoto S, Shibuya T, Sawaki Y, Ishikawa T, Shu D, Li Y, Han J (2008) Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res 14:159–174

    CAS  Google Scholar 

  • Koonce MP, Schliwa M (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules. J Cell Biol 100:322–326

    PubMed  CAS  Google Scholar 

  • Köster M, Jensen P, Meyer-Reil L (1991) Hydrolytic activities of organisms and biogenic structures in deep-sea sediments. In: Chrost RJ (ed.) Microbial enzymes in aquatic environments. Springer, New York, pp 298–310

    Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    PubMed  CAS  Google Scholar 

  • Langer MR (1992) Biosynthesis of glucosaminoglycans in foraminifera: a review. Mar Micropaleontol 19:245–255

    Google Scholar 

  • Langer MR, Gehring C (1993) Bacteria farming: a possible feeding strategy of some smaller, motile foraminifera. J Foraminifer Res 23:40–46

    Google Scholar 

  • Laureillard J, Mejanelle L, Sibuet M (2004) Use of lipids to study the trophic ecology of deep-sea xenophyophores. Mar Ecol Prog Ser 270:129–140

    CAS  Google Scholar 

  • Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M, Fuchs BM, Amann R, Lass U, Kuypers MM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–585

    PubMed  CAS  Google Scholar 

  • Leduc D, Probert PK (2009) The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: a study using stable isotope and fatty acid analyses. J Exp Mar Biol Ecol 371:130–139

    CAS  Google Scholar 

  • Lee JJ, Faber WW, Lee RE (1991) Antigranulocytes reticulopodal digestion – a possible preadaptation to benthic foraminiferal symbiosis. Symbiosis 10:47–61

    Google Scholar 

  • Leiter C (2008) Benthos-Foraminiferen in Extremhabitaten: Auswertung von METEOR-Expeditionen vor Namibia. Ph.D., Faculty of Geosciences, LMU Munich, Germany, p 103 [in German, free access: http://edoc.ub.uni-muenchen.de/view/subjects/fak20.html]

  • Leiter C, Altenbach AV (2010) Benthic foraminifera from the diatomaceous mud-belt off Namibia: characteristic species for severe anoxia. Palaeontol Electron 13(2):1–19

    Google Scholar 

  • Levin LA, Thomas CL (1988) The ecology of xenophyophores (Protista) on Eastern Pacific seamounts. Deep-Sea Res 35:2003–2027

    Google Scholar 

  • Li Y, Guo JF, Zhang XL, Zhang WQ, Liu YH, Yang WX, Li YY, Liu LQ, Shu DG (2008) Vase-shaped microfossils from the Ediacaran Weng’an biota, Guizhou, South China. Gondwana Res 14:263–268

    Google Scholar 

  • Licari L, Mackensen A (2005) Benthic foraminifera off West Africa (1 N to 32 S): do live assemblages from the topmost sediment reliably record environmental variability? Mar Micropaleontol 55:205–233

    Google Scholar 

  • Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera – a static concept or a dynamic adaption to optimize food acquisition? Mar Micropaleontol 20:215–234

    Google Scholar 

  • Lipps JH (1992) Proterozoic and Cambrian skeletonized protists. In: Schopf JW, Klein C (eds.) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, UK, pp 237–240

    Google Scholar 

  • Loeblich AR, Tappan H (1964) Sarcodina chiefly “Thecamoebians” and Foraminiferida. In: Moore RC (ed.) Treatise on invertebrate paleontology, part C, protista 2. The University of Kansas Press and The Geological Society of America, Boulder, USA

    Google Scholar 

  • Loeblich AR, Tappan H (1988) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York

    Google Scholar 

  • Loeblich AR, Tappan H (1989) Implications of wall composition and structure in agglutinated ­foraminifers. J Paleontol 63:769–777

    Google Scholar 

  • Longet D, Pawlowski J (2007) Higher-level phylogeny of foraminifera inferred from the RNA polymerase II (RPBI) gene. Eur J Protistol 43:171–177

    PubMed  Google Scholar 

  • Marszalek DS (1969) Observations on Iridia diaphana, a marine foraminifer. J Protozool 16:599–611

    Google Scholar 

  • Marszalek DS, Wright RC, Hay WW (1969) Function of the test in foraminifera. Trans Gulf Coast Assoc Geol Soc 19:341–352

    Google Scholar 

  • Matz MV, Frank TM, Marshall NJ, Widder EA, Johnsen S (2008) Giant deep-sea protist produces bilaterian-like traces. Curr Biol 18:1849–1854

    PubMed  CAS  Google Scholar 

  • McIlroy D, Green OR, Brasier MD (2001) Palaeobiology and evolution of the earliest agglutinated foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34:13–29

    Google Scholar 

  • Mentel M, Martin W (2008) Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos T Roy Soc B 363:2717–2729

    Google Scholar 

  • Meyer-Reil L, Köster M (1991) Fine-scale distribution of hydrolytic activity associated with foraminiferans and bacteria in deep-sea sediments of the Norwegian-Greenland Sea. Kieler Meeresforschungen 8:121–126, sp.vol

    Google Scholar 

  • Minge MA, Silberman JD, Orr RJS, Cavalier-Smith T, Shalchian-Tabrizi K, Burki F, Skjaeveland A, Jakobsen KS (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. P Roy Soc UK Bio 276:597–604

    CAS  Google Scholar 

  • Moens T, dos Santos GAP, Thompson F, Swings J, Fonseca-Genevois V, Vincx M, De Mesel I (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83

    Google Scholar 

  • Monnin C, Jeandel C, Cattaldo T, Dehairs F (1999) The marine barite saturation state of the world’s oceans. Mar Chem 65:253–261

    CAS  Google Scholar 

  • Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266

    PubMed  CAS  Google Scholar 

  • Nozawa F, Kitazato H, Tsuchiya M, Gooday AJ (2006) ‘Live’ benthic foraminifera at a abyssal site in the equatorial Pacific nodule province: abundance, diversity and taxonomic composition. Deep-Sea Res 53:1406–1422

    Google Scholar 

  • Nyholm K-G (1957) Orientation and binding power of recent monothalamous foraminifera in soft sediments. Micropaleontology 3:75–76

    Google Scholar 

  • Pawlowski J (2008) The twilight of Sarcodina: a molecular perspective on the polyphyletic origin of amoeboid protists. Protistology 5:281–302

    Google Scholar 

  • Pawlowski J, Burki F (2009) Untangling the phylogeny of amoeboid protists. J Eukaryot Microbiol 56:16–25

    PubMed  CAS  Google Scholar 

  • Pawlowski J, Gooday AJ (2009) Precambrian biota: protistan origin of trace fossils? Curr Biol 19:R28–R30

    PubMed  CAS  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni J, Cedhagen T, Bowser SS (2002) Phylogeny of allogromiid ­foraminifera inferred from SSU rRNA gene sequences. J Foraminifer Res 32:334–343

    Google Scholar 

  • Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS (2003a) The evolution of early foraminifera. Proc Natl Acad Sci USA 100:11494–11498

    PubMed  CAS  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni J, Richardson SL (2003b) Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan. J Eukaryot Microbiol 50:483–487

    PubMed  CAS  Google Scholar 

  • Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysgaard S, Risgaard-Petersen N (2010) Widespread occurrence of nitrate storage and denitrification among foraminifera and Gromiida. Proc Natl Acad Sci USA 107:1148–1153

    PubMed  Google Scholar 

  • Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385

    Google Scholar 

  • Richardson K, Cedhagen T (2001) Quantifying pelagic-benthic coupling in the North Sea: are we ­asking the right questions? Senckenbergiana maritima 31:215–224

    Google Scholar 

  • Richardson S, Rutzler K (1999) Bacterial endosymbionts in the agglutinating foraminiferan Spiculidendron corallicolum Rutzler and Richardson 1996. Symbiosis 26:299–312

    Google Scholar 

  • Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme sharing concept. Mar Ecol 23:93–113

    CAS  Google Scholar 

  • Rinaldi RA, Jahn TL (1964) Shadowgraphs of protoplasmic movement in Allogromia-laticollaris and a correlation of this movement to striated muscle contraction. Protoplasma 58:369–390

    Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, Derksen JWM, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    PubMed  CAS  Google Scholar 

  • Roger AJ, Hug LA (2006) The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos T Roy Soc B 361:1039–1054

    CAS  Google Scholar 

  • Rothman DH, Haynes JM, Summons RE (2003) Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA 100:8124–8129

    PubMed  CAS  Google Scholar 

  • Rupp G, Bowser SS, Manella CA, Rieder CL (1986) Naturally occuring tubulin-containing paracrystals in Allogromia: immunocytochemical identification and functional significance. Cell Motil Cytoskeleton 6:363–375

    PubMed  CAS  Google Scholar 

  • Schulz H, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    PubMed  CAS  Google Scholar 

  • Scott DB, Medioli F, Braund R (2003) Foraminifera from the Cambrian of Nova Scotia: the oldest multichambered foraminifera. Micropaleontology 49:109–126

    Google Scholar 

  • Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93

    Google Scholar 

  • Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7:43–54

    Google Scholar 

  • Sternberg E, Jeandel C, Robin E, Souhaut M (2008) Seasonal cycle of suspended barite in the mediterranean sea. Geochim Cosmochim Acta 72:4020–4034

    CAS  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microb 69:2657–2663

    CAS  Google Scholar 

  • Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi W, Edgcomb VP (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72

    PubMed  Google Scholar 

  • Stumm W (1984) Interpretation and measurement of redox intensity in natural waters. Aquat Sci 46:291–296

    Google Scholar 

  • Takishita K, Miyake H, Kawato M (2005a) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    PubMed  CAS  Google Scholar 

  • Takishita K, Inagaki Y, Tsuchiya M, Sakaguchi M, Maruyama T (2005b) A close relationship between Cercozoa and foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, α-tubulin, and β-tubulin). Gene 362:153–160

    PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic Lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64

    PubMed  CAS  Google Scholar 

  • Tappan H, Loeblich AR (1988) Foraminiferal evolution, diversification, and extinction. J Paleontol 62:695–714

    Google Scholar 

  • Tendal OS (1979) Aspects of the biology of Komokiacea and Xenophyophoria. Sarsia 64:13–17

    Google Scholar 

  • Tendal OS (1994) Protozoa Xenophyophorea Granuloreticulosa: Psammina zonaria sp. nov. from the West Pacific and some aspects of the growth of xenophyophores. Mem Mus Nat d’Histoire Naturelle 161:49–54

    Google Scholar 

  • Tendal OS, Thomsen E (1988) Observation on the life position and size of the large foraminifer Astrorhiza arenaria Norman, 1876 from the shelf off Northern Norway. Sarsia 20:39–42

    Google Scholar 

  • Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? In: Monechi S, Coccioni R, Rampino M (eds.) Large ecosystem perturbations: causes and consequences. Geological Society of America special papers, 424:1–23

    Google Scholar 

  • Travis JL, Welnhofer EA, Orokos DD (2002) Autonomous reorganization of foraminiferan reticulopodia. J Foraminifer Res 32:425–433

    Google Scholar 

  • Tsuchiya M, Toyofuku T, Takishita K, Yamamoto H, Collen J, Kitazato, H (2006) Molecular characterization of bacteria and kleptoplast within Virgulinella fragilis. In: Kitazato H, Bernhard JM (eds.) FORAMS 2006, Anuário do Instituto de Geociências, 29(6):471–472. http://www.anuario.igeo.ufrj.br/anuario_2006_1/Anuario_2006_1_471_472.pdf. Last access 9 June 2009

  • Tsuchiya M, Grimm GW, Heinz P, Stögerer K, Ertan KT, Collen J, Brüchert V, Hemleben C, Hemleben V, Kitazato H (2009) Ribosomal DNA shows extremely low genetic divergence in a world-wide distributed, but disjunct and highly adapted marine protozoan (Virgulinella fragilis, Foraminiferida). Mar Micropaleontol 70:8–19

    Google Scholar 

  • van Hellemond JJ, van der Klei A, van Weelden SWH, Tielens AGM (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos T Roy Soc B 358:205–215

    Google Scholar 

  • Welnhofer EA, Travis JL (1997) Evidence for a direct conversion between two tubulin polymers – microtubules and helical filaments – in the foraminiferan, Allogromia laticollaris. Cell Motil Cytoskeleton 41:107–116

    Google Scholar 

  • Wille M, Nägler TF, Lehmann B, Schröder S, Kramers JD (2008) Hydrogen sulfide release to surface waters at the Precambrian/Cambrian boundary. Nature 453:767–769

    PubMed  CAS  Google Scholar 

  • Wille M, Nägler TF, Lehmann B, Schröder S, Kramers JD (2009) Wille et al. reply. Nature 459:E6

    CAS  Google Scholar 

  • Winchester-Seeto TM, McIlroy D (2006) Lower Cambrian melanosclerites and foraminiferal linings from the Lontova Formation, St. Petersburg, Russia. Rev Palaeobot Palynol 139:71–79

    Google Scholar 

  • Wotton RS (2005) The essential role of exopolymers (EPS) in aquatic systems. Oceanogr Mar Biol 42:57–94

    Google Scholar 

  • Yoon HS, Grant J, Tekele YI, Wu M, Chaon BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA (2008) Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 8. doi:10.1186/1471-2148-8-14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Volker Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Altenbach, A.V., Gaulke, M. (2012). Did Redox Conditions Trigger Test Templates in Proterozoic Foraminifera?. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_31

Download citation

Publish with us

Policies and ethics