Skip to main content

Purinergic Regulation of Airway Inflammation

  • Chapter
  • First Online:
Purinergic Regulation of Respiratory Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 55))

Abstract

The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the “inflammasome”. This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    PubMed  Google Scholar 

  2. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  3. la Sala A, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2003) Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 73:339–343

    PubMed  Google Scholar 

  4. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    PubMed  CAS  Google Scholar 

  5. Boeynaems J-M, Communi D (2006) Modulation of inflammation by extracellular nucleotides. J Invest Dermatol 126:943–944

    PubMed  CAS  Google Scholar 

  6. Khakh BS (2006) Alan North R: P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    PubMed  CAS  Google Scholar 

  7. Chen L, Brosnan CF (2006) Regulation of immune response by P2X7 receptor. Crit Rev Immunol 26:499–513

    PubMed  CAS  Google Scholar 

  8. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    PubMed  CAS  Google Scholar 

  9. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    PubMed  CAS  Google Scholar 

  10. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323

    PubMed  CAS  Google Scholar 

  11. Di Virgilio F (2007) Liaisons dangereuses: P2X7 receptor and the inflammasome. Trends Pharmacol Sci 28:465–472

    PubMed  Google Scholar 

  12. Haskó G, Pacher P, Deitch EA, Vizi ES (2007) Shaping monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113:264–275

    PubMed  Google Scholar 

  13. Donnelly-Roberts D, McGaraughty S, Shieh C-C, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    PubMed  CAS  Google Scholar 

  14. Di Virgilio F (2007) Purinergic signaling in the immune system. Purinergic Signal 3:1–3

    PubMed  Google Scholar 

  15. Burnstock G (2006) Purinergic signaling-an overview. Novartis Found Symp 276:26–48

    PubMed  CAS  Google Scholar 

  16. Llaudet E, Botting NP, Crayston JA, Dale N (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18:43–52

    PubMed  CAS  Google Scholar 

  17. Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    PubMed  CAS  Google Scholar 

  18. Gourine AV, Dale N, Llaudet E, Poputnikov DM, Spyer KM, Gourine VN (2007) Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585:305–316

    PubMed  CAS  Google Scholar 

  19. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

    PubMed  CAS  Google Scholar 

  20. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, DV F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS ONE 3:e2599

    PubMed  Google Scholar 

  21. Maggi A, Ciana P (2005) Reporter mice and drug discovery and development. Nat Rev Drug Discov 4:249–255

    PubMed  CAS  Google Scholar 

  22. Kim S-Y, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142:984–992

    PubMed  CAS  Google Scholar 

  23. Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526

    PubMed  CAS  Google Scholar 

  24. Di Virgilio F (2005) Purinergic mechanism in the immune system: a signal of danger for dendritic cells. Purinergic Signal 1:205–209

    PubMed  Google Scholar 

  25. Yeretssian G, Labbé K, Saleh M (2008) Molecular regulation of inflammation and cell death. Cytokine 43:380–390

    PubMed  CAS  Google Scholar 

  26. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MAM, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13:913–919

    PubMed  CAS  Google Scholar 

  27. Eltzschig HK (2009) Adenosine – an old drug newly discovered. Anesthesiology 111:904–915

    PubMed  CAS  Google Scholar 

  28. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    PubMed  CAS  Google Scholar 

  29. Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P (2009) A2B adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270

    PubMed  CAS  Google Scholar 

  30. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98:9983–9988

    PubMed  CAS  Google Scholar 

  31. Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678

    PubMed  CAS  Google Scholar 

  32. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    PubMed  CAS  Google Scholar 

  33. Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275:4429–4434

    PubMed  CAS  Google Scholar 

  34. Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK (2009) Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10:195–202

    PubMed  CAS  Google Scholar 

  35. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–2035

    PubMed  CAS  Google Scholar 

  36. Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118:3301–3315

    PubMed  CAS  Google Scholar 

  37. Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA, Enjyoji K, Robson SC, Colgan SP (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198:783–796

    PubMed  CAS  Google Scholar 

  38. Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137

    PubMed  Google Scholar 

  39. Hart M, Jacobi B, Schittenhelm J, Henn M, Eltzschig HK (2009) A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J Immunol 182:3965–3968

    PubMed  CAS  Google Scholar 

  40. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250

    PubMed  CAS  Google Scholar 

  41. Douillet CD, Robinson WP III, Zarzaur BL, Lazarowski ER, Boucher RC, Rich PB (2005) Mechanical ventilation alters airway nucleotides and purinoceptors in lung and extrapulmonary organs. Am J Respir Cell Mol Biol 32:52–58

    PubMed  CAS  Google Scholar 

  42. Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175

    PubMed  CAS  Google Scholar 

  43. Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP (2009) Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 182:4957–4964

    PubMed  CAS  Google Scholar 

  44. Eltzschig H, Weissmüller T, Mager A, Eckle T (2006) Nucleotide metabolism and cell-cell interactions. Meth Mol Biol 341:73–88

    CAS  Google Scholar 

  45. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

    PubMed  CAS  Google Scholar 

  46. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Nat Acad Sci USA 105:8067–8072

    PubMed  CAS  Google Scholar 

  47. Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188:1433–1443

    PubMed  CAS  Google Scholar 

  48. Cook DN, Bottomly K (2007) Innate immune control of pulmonary dendritic cell trafficking. Proc Am Thorac Soc 4:234–239

    PubMed  Google Scholar 

  49. Hofer S, Ivarsson L, Stoitzner P, Auffinger M, Rainer C, Romani N, Heufler C (2003) Adenosine slows migration of dendritic cells but does not affect other aspects of dendritic cell maturation. J Investig Dermatol 121:300–307

    PubMed  CAS  Google Scholar 

  50. Idzko M, Dichmann S, Ferrari D, Di Virgilio F, la Sala A, Girolomoni G, Panther E, Norgauer J (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100:925–932

    PubMed  CAS  Google Scholar 

  51. Müller T, Robaye B, Vieira RP, Ferrari D, Grimm M, Jakob T, Martin SF, Di Virgilio F, Boeynaems JM, Virchow JC, Idzko M (2010) The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65:1545–1553

    PubMed  Google Scholar 

  52. Berchtold S, Ogilvie ALJ, Bogdan C, Muhl-Zurbes P, Ogilvie A, Schuler G, Steinkasserer A (1999) Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett 458:424–428

    PubMed  CAS  Google Scholar 

  53. Panther E, Idzko M, Herouy Y, Rheinen H, Gebicke-Haerter PJ, Mrowietz U, Dichmann S, Norgauer J (2001) Expression and function of adenosine receptors in human dendritic cells. FASEB J 15:1963–1970

    PubMed  CAS  Google Scholar 

  54. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    PubMed  CAS  Google Scholar 

  55. Goepfert C, Sundberg C, Sevigny J, Enjyoji K, Hoshi T, Csizmadia E, Robson S (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104:3109–3115

    PubMed  CAS  Google Scholar 

  56. Lambert C, Ase AR, Séguéla P, Antel JP (2010) Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun 24:1241–1248

    PubMed  CAS  Google Scholar 

  57. Pike MC, Snyderman R (1981) Transmethylation reactions are required for initial morphologic and biochemical responses of human monocytes to chemoattractants. J Immunol 127:1444–1449

    PubMed  CAS  Google Scholar 

  58. Pike MC, Snyderman R (1982) Transmethylation reactions regulate affinity and functional activity of chemotactic factor receptors on macrophages. Cell 28:107–114

    PubMed  CAS  Google Scholar 

  59. Vylkova S, Sun JN, Edgerton M (2007) The role of released ATP in killing Candida albicans and other extracellular microbial pathogens by cationic peptides. Purinergic Signal 3:91–97

    PubMed  CAS  Google Scholar 

  60. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim H-C, Sargin S, Schon P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55

    PubMed  Google Scholar 

  61. Huszar E, Vass G, Vizi E, Csoma Z, Barat E, Molnar Vilagos G, Herjavecz I, Horvath I (2002) Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. Eur Respir J 20:1393–1398

    PubMed  CAS  Google Scholar 

  62. Vass G, Huszar E, Augusztinovicz M, Baktai G, Barat E, Herjavecz I, Horvath I (2006) The effect of allergic rhinitis on adenosine concentration in exhaled breath condensate. Clin Exp Allergy 36:742–747

    PubMed  CAS  Google Scholar 

  63. Esther CR Jr, Boysen G, Olsen BM, Collins LB, Ghio AJ, Swenberg JW, Boucher RC (2009) Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol 296:L987–L993

    CAS  Google Scholar 

  64. Brown RA, Spina D, Page CP (2008) Adenosine receptors and asthma. Br J Pharmacol 153:S446–S456

    PubMed  CAS  Google Scholar 

  65. Knight D, Zheng X, Rocchini C, Jacobson M, Bai T, Walker B (1997) Adenosine A3 receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 62:465–468

    PubMed  CAS  Google Scholar 

  66. Young HWJ, Molina JG, Dimina D, Zhong H, Jacobson M, Chan L-NL, Chan T-S, Lee JJ, Blackburn MR (2004) A3 adenosine receptor signaling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. J Immunol 173:1380–1389

    PubMed  CAS  Google Scholar 

  67. Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ (1993) 5′-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest 91:2320–2325

    PubMed  CAS  Google Scholar 

  68. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    PubMed  CAS  Google Scholar 

  69. Eltzschig HK, Macmanus C, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107

    PubMed  CAS  Google Scholar 

  70. Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, Junger WG (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486

    PubMed  CAS  Google Scholar 

  71. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    PubMed  CAS  Google Scholar 

  72. Picher M, Burch LH, Boucher RC (2004) Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis. J Biol Chem 279:20234–20241

    PubMed  CAS  Google Scholar 

  73. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    PubMed  CAS  Google Scholar 

  74. Zalavary S, Bengtsson T (1998) Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Eur J Cell Biol 75:128–139

    PubMed  CAS  Google Scholar 

  75. Coffey RG (1992) Effects of cyclic nucleotides on granulocytes. Immunol Ser 57:301–338

    PubMed  CAS  Google Scholar 

  76. Inoue Y, Chen Y, Hirsh MI, Yip L, Junger WG (2008) A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30:173–177

    PubMed  Google Scholar 

  77. Silva MT (2010) When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87:93–106

    PubMed  CAS  Google Scholar 

  78. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    PubMed  CAS  Google Scholar 

  79. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    PubMed  CAS  Google Scholar 

  80. Brinkmann V, Goosmann C, Laube B, Zychlinsky A, Abu Abed U (2010) Neutrophil extracellular traps: how to generate and visualize them. J Vis Exp 36:e1724

    Google Scholar 

  81. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    PubMed  CAS  Google Scholar 

  82. Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP (2004) Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol 286:C264–C271

    CAS  Google Scholar 

  83. Suh B-C, Kim J-S, Namgung U, Ha H, Kim K-T (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–6763

    PubMed  CAS  Google Scholar 

  84. Gu BJ, Saunders BM, Jursik C, Wiley JS (2010) The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of non-opsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 115:1621–1631

    PubMed  CAS  Google Scholar 

  85. Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R (2010) Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 216:1–11

    PubMed  Google Scholar 

  86. Miyabe K, Sakamoto N, Wu YH, Mori N, Sakamoto H (2004) Effects of platelet release products on neutrophilic phagocytosis and complement receptors. Thromb Res 114:29–36

    PubMed  CAS  Google Scholar 

  87. Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20:S1–S13

    PubMed  CAS  Google Scholar 

  88. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  89. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    PubMed  CAS  Google Scholar 

  90. Di Virgilio F, Ferrari D, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR (1996) P2 purinoceptors in the immune system. Ciba Found Symp 198:290–302

    PubMed  Google Scholar 

  91. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1[beta] release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    PubMed  CAS  Google Scholar 

  92. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394

    PubMed  CAS  Google Scholar 

  93. Benko S, Philpott DJ, Girardin SE (2008) The microbial and danger signals that activate Nod-like receptors. Cytokine 43:368–373

    PubMed  CAS  Google Scholar 

  94. Franchi L, Kanneganti TD, Dubyak GR, Núñez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282:18810–18818

    PubMed  CAS  Google Scholar 

  95. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    PubMed  CAS  Google Scholar 

  96. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:195–203

    Google Scholar 

  97. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    PubMed  CAS  Google Scholar 

  98. Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A (1999) The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10:1463–1475

    PubMed  CAS  Google Scholar 

  99. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

    PubMed  CAS  Google Scholar 

  100. Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandona D, Savaglio E, Di Virgilio F (2007) Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 109:3856–3864

    PubMed  CAS  Google Scholar 

  101. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    PubMed  CAS  Google Scholar 

  102. Sato S, St-Pierre C, Bhaumik P, Nieminen J (2009) Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 230:172–187

    PubMed  CAS  Google Scholar 

  103. Myrtek D, Muller T, Geyer V, Derr N, Ferrari D, Zissel G, Durk T, Sorichter S, Luttmann W, Kuepper M, Norgauer J, Di Virgilio F, Virchow JC Jr, Idzko M (2008) Activation of human alveolar macrophages via P2 receptors: coupling to intracellular Ca2+ increases and cytokine secretion. J Immunol 181:2181–2188

    PubMed  CAS  Google Scholar 

  104. Idzko M, Panther E, Bremer HC, Sorichter S, Luttmann W, Virchow CJJ, Di Virgilio F, Herouy Y, Norgauer J, Ferrari D (2003) Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol 138:1244–1250

    PubMed  CAS  Google Scholar 

  105. Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow CJJ, Norgauer J, Chiozzi P, Di Virgilio F, Luttmann W (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486:217–224

    PubMed  CAS  Google Scholar 

  106. Molloy A, Laochumroonvorapong P, Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med 180:1499–1509

    PubMed  CAS  Google Scholar 

  107. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-Induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444

    PubMed  CAS  Google Scholar 

  108. Coutinho-Silva R, Stahl L, Raymond M-N, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19:403–412

    PubMed  CAS  Google Scholar 

  109. Brodbeck WG, Anderson JM (2009) Giant cell formation and function. Curr Opin Hematol 16:53–57

    PubMed  Google Scholar 

  110. Suga M, Yamasaki H, Nakagawa K, Kohrogi H, Ando M (1997) Mechanisms accounting for granulomatous responses in hypersensitivity pneumonitis. Sarcoidosis Vasc Diffuse Lung Dis 14:131–138

    PubMed  CAS  Google Scholar 

  111. Falzoni S, Munerati M, Ferrari D, Spisani S, Moretti S, Di Virgilio F (1995) The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J Clin Invest 95:1207–1216

    PubMed  CAS  Google Scholar 

  112. Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X7 receptor and polykarion formation. Mol Biol Cell 11:3169–3176

    PubMed  CAS  Google Scholar 

  113. Chiozzi P, Sanz JM, Ferrari D, Falzoni S, Aleotti A, Buell GN, Collo G, Virgilio FD (1997) Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2X7 receptor. J Cell Biol 138:697–706

    PubMed  CAS  Google Scholar 

  114. Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegatti P, Adinolfi E, Chiozzi P, Di Virgilio F (2006) Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immunol 177:7257–7265

    PubMed  CAS  Google Scholar 

  115. Merrill JT, Shen C, Schreibman D, Coffey D, Zakharenko O, Fisher R, Lahita RG, Salmon J, Cronstein BN (1997) Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum 40:1308–1315

    PubMed  CAS  Google Scholar 

  116. la Sala A, Ferrari D, Corinti S, Cavani A, Di Virgilio F, Girolomoni G (2001) Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 166:1611–1617

    PubMed  Google Scholar 

  117. Wilkin F, Stordeur P, Goldman M, Boeynaems JM, Robaye B (2002) Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10. Eur J Immunol 32:2409–2417

    PubMed  CAS  Google Scholar 

  118. Marteau F, Communi D, Boeynaems J-M, Suarez Gonzalez N (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–803

    PubMed  CAS  Google Scholar 

  119. Schnurr M, Then F, Galambos P, Scholz C, Siegmund B, Endres S, Eigler A (2000) Extracellular ATP and TNF-alpha synergize in the activation and maturation of human dendritic cells. J Immunol 165:4704–4709

    PubMed  CAS  Google Scholar 

  120. Mutini C, Falzoni S, Ferrari D, Chiozzi P, Morelli A, Baricordi OR, Collo G, Ricciardi-Castagnoli P, Di Virgilio F (1999) Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 163:1958–1965

    PubMed  CAS  Google Scholar 

  121. Mizumoto N, Kumamoto T, Robson SC, Sevigny J, Matsue H, Enjyoji K, Takashima A (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365

    PubMed  CAS  Google Scholar 

  122. Filippini A, Taffs RE, Agui T, Sitkovsky MV (1990) Ecto-ATPase activity in cytolytic T-lymphocytes. Protection from the cytolytic effects of extracellular ATP. J Biol Chem 265:334–340

    PubMed  CAS  Google Scholar 

  123. El-Moatassim C, Dornand J, Mani JC (1987) Extracellular ATP increases cytosolic free calcium in thymocytes and initiates the blastogenesis of the phorbol 12-myristate 13-acetate-treated medullary population. Biochim Biophys Acta 927:437–444

    PubMed  CAS  Google Scholar 

  124. Baricordi OR, Ferrari D, Melchiorri L, Chiozzi P, Hanau S, Chiari E, Rubini M, Di Virgilio F (1996) An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87:682–690

    PubMed  CAS  Google Scholar 

  125. Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, Di Virgilio F (1999) Increased proliferation rate of lymphoid cells transfected with the P2X7 ATP receptor. J Biol Chem 274:33206–33208

    PubMed  CAS  Google Scholar 

  126. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A, Cuneo A, Castoldi G, Di Virgilio F, Baricordi OR (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708

    PubMed  CAS  Google Scholar 

  127. Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-Selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–951

    PubMed  CAS  Google Scholar 

  128. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signaling cascade. Biochim Biophys Acta 1783:673–694

    PubMed  CAS  Google Scholar 

  129. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen J-F, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    PubMed  CAS  Google Scholar 

  130. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    PubMed  CAS  Google Scholar 

  131. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180

    PubMed  CAS  Google Scholar 

  132. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria TH17 cell differentiation. Nature 455:808–812

    PubMed  CAS  Google Scholar 

  133. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    PubMed  CAS  Google Scholar 

  134. Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274:18872–18879

    PubMed  CAS  Google Scholar 

  135. Ivanova EP, Alexeeva YV, Pham DK, Wright JP, Nicolau DV (2006) ATP level variations in heterotrophic bacteria during attachment on hydrophilic and hydrophobic surfaces. Int Microbiol 9:37–46

    PubMed  CAS  Google Scholar 

  136. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, Tubridy N, Mills KHG (2009) CD39+ Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183:7602–7610

    PubMed  CAS  Google Scholar 

  137. Kawaguchi M, Kokubu F, Fujita J, Huang SK, Hizawa N (2009) Role of interleukin-17F in asthma. Inflamm Allergy Drug Targets 8:383–389

    PubMed  CAS  Google Scholar 

  138. Hong SC, Lee SH (2010) Role of th17 cell and autoimmunity in chronic obstructive pulmonary disease. Immune Netw 10:109–114

    PubMed  Google Scholar 

  139. Traves SL, Donnelly LE (2008) Th17 cells in airway diseases. Curr Mol Med 8:416–426

    PubMed  CAS  Google Scholar 

  140. Doe C, Bafadhel M, Siddiqui S, Desai D, Mistry V, Rugman P, McCormick M, Woods J, May R, Sleeman MA, Anderson IK, Brightling CE (2010) Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138:1140–1147

    PubMed  CAS  Google Scholar 

  141. Erjefält J (2005) Transepithelial migration, necrosis and apoptosis as silent and pro-inflammatory fates of airway granulocytes. Curr Drug Targets Inflamm Allergy 4:425–431

    PubMed  Google Scholar 

  142. Goepfert C, Imai M, Brouard S, Csizmadia E, Kaczmarek E, Robson SC (2000) CD39 modulates endothelial cell activation and apoptosis. Mol Med 6:591–603

    PubMed  CAS  Google Scholar 

  143. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    PubMed  CAS  Google Scholar 

  144. Kawai Y, Kaidoh M, Ohhashi T (2008) MDA-MB-231 produces ATP-mediated ICAM-1-dependent facilitation of the attachment of carcinoma cells to human lymphatic endothelial cells. Am J Physiol 295:C1123–C1132

    CAS  Google Scholar 

  145. Freyer DR, Boxer LA, Axtell RA, Todd RF III (1988) Stimulation of human neutrophil adhesive properties by adenine nucleotides. J Immunol 141:580–586

    PubMed  CAS  Google Scholar 

  146. Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G (1992) Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148:2201–2206

    PubMed  CAS  Google Scholar 

  147. Zahler S, Becker BF, Raschke P, Gerlach E (1994) Stimulation of endothelial adenosine A1 receptors enhances adhesion of neutrophils in the intact guinea pig coronary system. Cardiovasc Res 28:1366–1372

    PubMed  CAS  Google Scholar 

  148. Tanaka N, Kawasaki K, Nejime N, Kubota Y, Nakamura K, Kunitomo M, Takahashi K, Hashimoto M, Shinozuka K (2004) P2Y receptor-mediated Ca2+ signaling increases human vascular endothelial cell permeability. J Pharmacol Sci 95:174–180

    PubMed  CAS  Google Scholar 

  149. Wakai A, Wang JH, Winter DC, Street JT, O’Sullivan RG, Redmond HP (2001) Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation. Shock 15:297–301

    PubMed  CAS  Google Scholar 

  150. Henttinen T, Jalkanen S, Yegutkin GG (2003) Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by ecto-5′-nucleotidase/CD73-dependent mechanism. J Biol Chem 278:24888–24895

    PubMed  CAS  Google Scholar 

  151. Airas L, Hellman J, Salmi M, Bono P, Puurunen T, Smith DJ, Jalkanen S (1995) CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J Exp Med 182:1603–1608

    PubMed  CAS  Google Scholar 

  152. Zen K, Parkos CA (2003) Leukocyte-epithelial interactions. Curr Opin Cell Biol 15:557–564

    PubMed  CAS  Google Scholar 

  153. Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40:519–535

    PubMed  CAS  Google Scholar 

  154. Liu L, Mul FP, Kuijpers TW, Lutter R, Roos D, Knol EF (1996) Neutrophil transmigration across monolayers of endothelial cells and airway epithelial cells is regulated by different mechanisms. Ann NY Acad Sci 796:21–29

    PubMed  CAS  Google Scholar 

  155. Rounds S, Likar LL, Harrington EO, Kim KC, Smeglin A, Heins K, Parks N (1999) Nucleotide-induced PMN adhesion to cultured epithelial cells: possible role of MUC1 mucin. Am J Physiol 277:L874–L880

    PubMed  CAS  Google Scholar 

  156. Chen Y, Zhao YH, Wu R (2001) Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates. Am J Respir Cell Mol Biol 25:409–417

    PubMed  CAS  Google Scholar 

  157. Patel NJ, Zaborina O, Wu L, Wang Y, Wolfgeher DJ, Valuckaite V, Ciancio MJ, Kohler JE, Shevchenko O, Colgan SP, Chang EB, Turner JR, Alverdy JC (2007) Recognition of intestinal epithelial HIF-1alpha activation by Pseudomonas aeruginosa. Am J Physiol 292:G134–G142

    CAS  Google Scholar 

  158. Laughlin RS, Musch MW, Hollbrook CJ, Rocha FM, Chang EB, Alverdy JC (2000) The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232:133–142

    PubMed  CAS  Google Scholar 

  159. Bajolet-Laudinat O, Girod-de Bentzmann S, Tournier JM, Madoulet C, Plotkowski MC, Chippaux C, Puchelle E (1994) Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62:4481–4487

    PubMed  CAS  Google Scholar 

  160. Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M (2010) Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol 298:L804–L818

    CAS  Google Scholar 

  161. Campodónico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB (2008) Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 14:120–133

    PubMed  Google Scholar 

  162. McNamara N, Khong A, McKemy D, Caterina M, Boyer J, Julius D, Basbaum C (2001) ATP transduces signals from ASGM1, a glycolypid that functions as a bacterial receptor. Proc Natl Acad Sci USA 98:9086–9091

    PubMed  CAS  Google Scholar 

  163. McNamara N, Gallup M, Sucher A, Maltseva I, McKemy D, Basbaum C (2006) AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2. Am J Respir Cell Mol Biol 34:653–660

    PubMed  CAS  Google Scholar 

  164. Morello S, Ito K, Yamamura S, Lee K-Y, Jazrawi E, DeSouza P, Barnes P, Cicala C, Adcock IM (2006) IL-1beta and TNFalpha regulation of the adenosine receptor (A2A) expression: differential requirement for NFkB binding to the proximal promoter. J Immunol 177:7173–7183

    PubMed  CAS  Google Scholar 

  165. Ribeiro CMP, Paradiso AM, Carew MA, Shears SB, Boucher RC (2005) Cystic fibrosis airway epithelial Ca2+i signaling: the mechanism for the larger agonist-mediated intracellular Ca2+ signal in human cystic fibrosis airway epithelia. J Biol Chem 280:10202–10209

    PubMed  CAS  Google Scholar 

  166. Ribeiro CM, Paradiso AM, Schwab U, Perez-Vilar J, Jones L, O’Neal WK, Boucher RC (2005) Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 280:17798–17806

    PubMed  CAS  Google Scholar 

  167. Boots AW, Hristova M, Kasahara DI, Haenen GR, Bast A, van der Vliet A (2009) ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 284:17858–17867

    PubMed  CAS  Google Scholar 

  168. Muller T, Bayer H, Myrtek D, Ferrari D, Sorichter S, Ziegenhagen MW, Zissel G, Virchow JC Jr, Luttmann W, Norgauer J, Di Virgilio F, Idzko M (2005) The P2Y14 receptor of airway epithelial cells: coupling to intracellular Ca2+ and IL-8 secretion. Am J Respir Cell Mol Biol 33:601–609

    PubMed  Google Scholar 

  169. Theatre E, Bours V, Oury C (2009) A P2X ion channel-triggered NF-kappaB pathway enhances TNF-alpha-induced IL-8 expression in airway epithelial cells. Am J Respir Cell Mol Biol 41:705–713

    PubMed  CAS  Google Scholar 

  170. Taylor AL, Schwiebert LM, Smith JJ, King C, Jones JR, Sorscher EJ, Schwiebert EM (1999) Epithelial P2X purinergic receptor channel expression and function. J Clin Invest 104:875–884

    PubMed  CAS  Google Scholar 

  171. Chung KF (2006) Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets 7:675–681

    PubMed  CAS  Google Scholar 

  172. Sun Y, Wu F, Sun F, Huang P (2008) Adenosine promotes IL-6 release in airway epithelia. J Immunol 180:4173–4181

    PubMed  CAS  Google Scholar 

  173. Douillet CD, Robinson WP, Milano PM, Boucher RC, Rich PB (2006) Nucleotides induce IL-6 release from human airway epithelia via P2Y2 and p38 MAPK-dependent pathways. Am J Physiol 291:L734–L746

    CAS  Google Scholar 

  174. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9:262–267

    PubMed  CAS  Google Scholar 

  175. Rollins BM, Burn M, Coakley RD, Chambers LA, Hirsh AJ, Clunes MT, Lethem MI, Donaldson SH, Tarran R (2008) A2B adenosine receptors regulate the mucus clearance component of the lung’s innate defense system. Am J Respir Cell Mol Biol 39:190–197

    PubMed  CAS  Google Scholar 

  176. Rada B, Lekstrom K, Damian S, Dupuy C, Leto TL (2008) The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883–4893

    PubMed  CAS  Google Scholar 

  177. Kim TB, Moon KA, Lee KY, Park CS, Bae YJ, Moon HB, Cho YS (2009) Chlamydophila pneumoniae triggers release of CCL20 and vascular endothelial growth factor from human bronchial epithelial cells through enhanced intracellular oxidative stress and MAPK activation. J Clin Immunol 29:629–636

    PubMed  CAS  Google Scholar 

  178. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426

    PubMed  CAS  Google Scholar 

  179. Marcet B, Horckmans M, Libert F, Hassid S, Boeynaems JM, Communi D (2007) Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells. J Cell Physiol 211:716–727

    PubMed  CAS  Google Scholar 

  180. Huang F, Wachi S, Thai P, Loukoianov A, Tan KH, Forteza RM, Wu R (2008) Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma. J Allergy Clin Immunol 121:1415–1421

    PubMed  CAS  Google Scholar 

  181. Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptorsinduce IL-19 from bronchial epithelial cells, resulting in TNFalpha increase. Am J Respir Cell Mol Biol 35:587–592

    PubMed  CAS  Google Scholar 

  182. Huang SK, Peters-Golden M (2008) Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest 133:1442–1450

    PubMed  CAS  Google Scholar 

  183. Lazarowski ER, Boucher RC, Harden TK (1994) Calcium-dependent release of arachidonic acid in response to purinergic receptor activation in airway epithelium. Am J Physiol 266:C406–C415

    PubMed  CAS  Google Scholar 

  184. Laubinger W, Tulapurkar ME, Schäfer R, Reiser G (2006) Distinct mono- and dinucleotide-specific P2Y receptors in A549 lung epithelial cells: different control of arachidonic acid release and nitric oxide synthase expression. Eur J Pharmacol 543:1–7

    PubMed  CAS  Google Scholar 

  185. Picher M, Boucher RC (2000) Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways. Am J Respir Cell Mol Biol 23:255–261

    PubMed  CAS  Google Scholar 

  186. Marcet B, Libert F, Boeynaems J-M, Communi D (2007) Extracellular nucleotides induce COX-2 up-regulation and prostaglandin E2 production in human A549 alveolar type II epithelial cells. Eur J Pharmacol 566:167–171

    PubMed  CAS  Google Scholar 

  187. Cobb BR, Ruiz F, King CM, Fortenberry J, Greer H, Kovacs T, Sorscher EJ, Clancy JP (2002) A2 adenosine receptors regulate CFTR through PKA and PLA2. Am J Physiol 282:L12–L25

    CAS  Google Scholar 

  188. Li Y, Wang W, Parker W, Clancy JP (2006) Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia. Am J Respir Cell Mol Biol 34:600–608

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by United States National Institutes of Health (grants R01-HL092188, R01-DK083385, and R01HL098294) to H.K.E and Deutsche Forschungsgemeinschaft research fellowship to M.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Virgilio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Koeppen, M., Di Virgilio, F., Clambey, E.T., Eltzschig, H.K. (2011). Purinergic Regulation of Airway Inflammation. In: Picher, M., Boucher, R. (eds) Purinergic Regulation of Respiratory Diseases. Subcellular Biochemistry, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1217-1_7

Download citation

Publish with us

Policies and ethics